# INVISIBLE UNBREAKABLE UNNATURAL

PFAS Contamination of U.S. Surface Waters



#### ACKNOWLEDGMENTS

This report was produced by Waterkeeper® Alliance, New York, NY, in cooperation with participating Waterkeeper groups from across the United States. Data, analysis, and technical findings were supplied for the sole purpose of this report by the contracted service provider, Cyclopure Inc., Skokie, IL. The Cyclopure technical report can be accessed at <u>waterkeeper.</u> <u>org/pfas</u>. Previously published supplementary and contextual content referenced herein with permission from the Environmental Working Group (EWG). A third-party scientific review was provided by Robert W. Bowcock, Founder and Managing Director of Integrated Resource Management and Dominique Lueckenhoff, Senior Vice-President Corporate Affairs, EHS & Sustainability at HUGO NEU and a former water program official with the U.S. Environmental Protection Agency (EPA). The monitoring project that led to the creation of this report was managed by Christian Breen, Field Investigator for Waterkeeper Alliance.

#### ABOUT WATERKEEPER ALLIANCE

Waterkeeper Alliance is a global water movement that unites more than 300 communitybased Waterkeeper Organizations and Affiliates in 46 countries. We advance a shared mission to protect everyone's right to clean water by focusing citizen action on issues that affect our waterways, from pollution to climate change. Together, the movement patrols and protects over 2.6 million square miles of rivers, lakes, and coastlines in the Americas, Europe, Australia, Asia, and Africa. Learn more at <u>waterkeeper.org</u>.

This report was produced as part of Waterkeeper Alliance's ACT50 initiative, which celebrates the 50th anniversary of the U.S. Clean Water Act (CWA). Foundational to the Alliance's U.S.based advocacy work, the Act was expanded in 1972 to regulate discharges of pollutants into the waters of the United States and to maintain quality standards for U.S. surface waters. The goals of the initiative are to celebrate CWA successes, rally support to strengthen this important law, and inspire worldwide action for clean water. Learn more at <u>waterkeeper.org/ACT50</u>.

#### DISCLAIMER

Waterkeeper Alliance is responsible for the opinions and recommendations expressed or implied in this report and for obtaining permission from organization(s) that own the copyright to previously published material referenced herein. The contracted service provider is responsible for the authenticity of their materials, methodologies, data, and analysis referenced herein.

#### CREDITS

Report design by Harrison Wedel

Sampling photos by participating Waterkeeper groups (See Appendix 1)

Cover photos courtesy of Shutterstock and Adobe Stock

Appendices, Figures, and Tables created by Waterkeeper Alliance

Exceptions: Figures 9, 10, 11, 12 and Table 11 created by Cyclopure, Inc.

#### COPYRIGHT

Waterkeeper Alliance grants permission to reproduce material in this publication for research, media, and not-for-profit purposes. Permission is given with the understanding that none of the material will be used to imply endorsement of a particular product, method, or practice. It is expected that those reproducing the material in this document for research, media, and not-for-profit uses will give appropriate source acknowledgment. For other uses, submit a written permission request to media@waterkeeper.org.

180 Maiden Lane, Suite 603, New York, NY 10038 © 2022 Waterkeeper Alliance

# INVISIBLE UNBREAKABLE UNNATURAL

PFAS Contamination of U.S. Surface Waters

# REPORT AND ADDITIONAL ANALYSIS PREPARED BY WATERKEEPER ALLIANCE

Kelly Hunter Foster, Senior Attorney and Clean Water Defense Campaign Manager Daniel E. Estrin, General Counsel and Advocacy Director

# DATA, ANALYSIS, AND TECHNICAL FINDINGS PREPARED BY CYCLOPURE, INC.

Yuhan Ling, Ph.D., Vice President of Environmental Engineering Matt Notter, Vice President of Analytical Chemistries Ri Wang, Director of Environmental Engineering

#### THIRD-PARTY SCIENTIFIC REVIEW PROVIDED BY

**Robert W. Bowcock**, Founder and Managing Director of Integrated Resource Management **Dominique Lueckenhoff**, Senior Vice-President Corporate Affairs, EHS & Sustainability at HUGO NEU

**OCTOBER 2022** 

# TABLE OF CONTENTS

KANSAS

| EXECUTIVE SUMMARY   | 6  |
|---------------------|----|
| KEY TAKEAWAYS       | 12 |
| METHODOLOGY         | 14 |
| ANALYSIS & FINDINGS | 16 |
| RECOMMENDATIONS     | 48 |
| APPENDICES          | 54 |
| REFERENCES          | 68 |



PHOTO: KANSAS RIVERKEEPER

# **EXECUTIVE SUMMARY**

Per- and polyfluoroalkyl substances (PFAS) are a class of manufactured organic chemicals that are pervasive in the environment and are <u>linked to harmful public</u> <u>health and ecosystem impacts</u>.<sup>1</sup> Health risks include increased incidence of cancer, liver and kidney disease, reproductive issues, immunodeficiencies, and hormonal disruptions.

Widely used in manufacturing since at least the 1950s, and incorporated into many industrial and common consumer products such as non-stick cooking pans, food packaging, and water- and stain-resistant clothing, PFAS are often referred to as "forever chemicals." They are biopersistent, meaning they remain in organisms indefinitely without breaking down, and are bioaccumulative, meaning that over time, they build up in ever increasing amounts in people, wildlife, aquatic life, and the environment. Though experts estimate that <u>more than 200 million Americans</u> are exposed to PFAS through drinking water,<sup>2</sup> EPA has yet to finalize binding, enforceable regulatory standards that protect the public and our nation's waters, including sources of drinking water, from this serious health hazard.

As a class of chemicals, PFAS consist of approximately 9,000 different derivatives. <u>The origins of PFAS</u> <u>pollution<sup>3</sup></u> are well documented by <u>EPA and other</u> <u>sources</u>.<sup>4</sup> PFAS contamination is found in drinking water sources (both ground and surface waters), industrial wastewater, landfill leachate, and wastewater treatment plant (WWTP) effluent. Contamination is particularly notable at airbases and airports across the country due to the historic and continued use of PFAS-laden firefighting foams.<sup>5</sup>

While PFAS compounds are believed to be ubiquitous in U.S. waterways, no nationwide surface water quality survey exists. As a result, the levels and effects of PFAS are unknown for many rivers, streams, lakes, and other U.S. surface waters that serve as drinking water sources, recreational waters, and fisheries. To address this troubling lack of information about the presence of, and dangers posed by, PFAS in U.S. surface waters, Waterkeeper Alliance contracted with Cyclopure, Inc., a materials science and environmental engineering firm headquartered in Illinois, to help conduct a monitoring project in which we worked with more than 100 Waterkeeper groups across the United States on an unprecedented initiative to test U.S. surface waters for PFAS contamination.

During the late spring and early summer of 2022, a nationwide effort was carried out by 113 U.S. Waterkeeper groups, whose shared mission is to patrol, monitor, and protect rivers, lakes, and coastal waters from degradation. These participating Waterkeeper groups, listed below in Appendix 1, collected water samples from two locations in their respective home waterways – generally one upstream and one downstream of potential source of PFAS contamination - between May 26 and July 28, 2022.<sup>6</sup> A total of 228 samples were collected in 34 states and the District of Columbia (D.C.)., where U.S. Waterkeeper groups that agreed to participate in the project are located. States in which no samples were taken are listed in Appendix 5. To the best of our knowledge, this project constitutes the most extensive coordinated PFAS monitoring study conducted in the U.S. to date.

Cyclopure provided sampling kits to all of the participating Waterkeeper groups, ran the laboratory analysis for 55 PFAS structures on each returned test kit, and generated a technical data report in September 2022, setting forth the results for each tested sample. The report is the first of its kind to provide high-quality PFAS pollution data for surface waters across the country, and confirms the prevalence of significant harmful PFAS pollution from many different compounds across diverse waterways types and geographically unique locations.

This data unequivocally demonstrates that dangerous PFAS pollution is widespread in surface waters across the country, and that existing laws and regulations have been inadequate to protect public health and the environment from this under-appreciated threat. It is apparent from the results of this project and other credible information cited herein that EPA and the states must take more urgent action to monitor waterways, adopt standards for eliminating pollution sources and cleaning up existing contamination, and enforce those standards through permitting and enforcement actions.

# TABLE 1 Description of 35 PFAS Compounds Usage, Impacts, and Status

| PFAS Compound                      | Description from EWG Human Toxome Project <sup>7</sup> Unless Noted                                                                                                                                                                                                                                                       |
|------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                    | <ul> <li>Used to make Teflon pan coatings; breakdown product of stain- and<br/>grease-proof coatings.</li> </ul>                                                                                                                                                                                                          |
|                                    | • Likely human carcinogen and other health impacts.                                                                                                                                                                                                                                                                       |
| PFOA (Perfluorooctanoic acid)      | • Widespread presence documented in human blood serum. <u>CDC</u> <sup>8</sup>                                                                                                                                                                                                                                            |
|                                    | • Most use/production has been voluntarily discontinued in the U.S                                                                                                                                                                                                                                                        |
|                                    | <ul> <li>Does not break down or degrade in the environment - continuing<br/>human exposure.</li> </ul>                                                                                                                                                                                                                    |
|                                    | Active ingredient in Scotchgard prior to 2000.                                                                                                                                                                                                                                                                            |
|                                    | • Phase out forced by EPA because concentrations in human blood close to levels that harm lab animals.                                                                                                                                                                                                                    |
| PFOS (Perfluorooctanesulfonate)    | Most use/production discontinued in the U.S                                                                                                                                                                                                                                                                               |
|                                    | • Accumulates to a high degree in humans and wildlife and is known to damage the liver and to produce severe birth defects in lab animals.                                                                                                                                                                                |
|                                    | <ul> <li>Does not break down in the environment - continuing human<br/>exposure.</li> </ul>                                                                                                                                                                                                                               |
| PFHxA (Perfluorohexanoic acid)     | <ul> <li>Breakdown product of stain- and grease-proof coatings on food packaging and household products.</li> <li>Highly persistent in people and the environment.</li> <li>No restrictions on the production/use in the U.S</li> </ul>                                                                                   |
| PFPeA (Perfluoro-n-pentanoic Acid) | <ul> <li>Breakdown product of stain- and grease-proof coatings on food packaging, couches, carpets, including Stainmaster.</li> <li>A 5-carbon version of PFOA; highly persistent.</li> <li>No restrictions on the production/use in the U.S</li> </ul>                                                                   |
| PFBS (Perfluorobutane sulfonate)   | <ul> <li>An active ingredient in 3M's new Scotchgard.</li> <li>Structurally similar to PFOS, persistent</li> <li>No restrictions on the production/use in the U.S</li> </ul>                                                                                                                                              |
| PFHpA (Perfluoroheptanoic acid)    | <ul> <li>Breakdown product of stain- and grease-proof coatings on food packaging, couches, and carpets.</li> <li>A 7-carbon version of PFOA; persistent.</li> <li>No restrictions on the production/use in the U.S</li> </ul>                                                                                             |
| PFHxS (Perfluorohexanesulfonate)   | <ul> <li>In firefighting foams and carpet treatments.</li> <li>6-carbon sister chemical of the better known 8-carbon PFOS.</li> <li>Phased out of consumer products by 3M in 2000 over health concerns - no longer manufactured.</li> <li>Residual environmental contamination results in continued exposures.</li> </ul> |

| PFAS Compound                                          | Description from EWG Human Toxome Project <sup>7</sup> Unless Noted                                                                                                                                                                                                                                                   |
|--------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PFBA (Perfluorobutyric acid)                           | <ul> <li>Breakdown product of stain- and grease-proof coatings on food packaging, couches, and carpets, including Stainmaster.</li> <li>4-carbon version of PFOA; persistent.</li> <li>No restrictions on the production/use in the U.S</li> </ul>                                                                    |
| PFNA (Perfluorononanoic acid)                          | <ul> <li>Breakdown product of stain- and grease-proof coatings on food packaging, couches, and carpets.</li> <li>9-carbon version of PFOA; persistent; bioaccumulative.</li> <li>No restrictions on the production/use in the U.S</li> </ul>                                                                          |
| FBSA (Perfluorobutane sulfonamide)                     | <ul> <li>Used by 3M to make water- and stain-resistant products. <u>Univ. of Rhode</u><br/><u>Island</u><sup>9</sup></li> </ul>                                                                                                                                                                                       |
| PFDA (Perfluorodecanoic acid)                          | <ul> <li>Breakdown product of stain- and grease-proof coatings on food packaging, couches, and carpets.</li> <li>10-carbon version of PFOA; persistent; bioaccumulative.</li> <li>No restrictions on the production/use in the U.S</li> </ul>                                                                         |
| 6:2 FTS (6:2 Fluorotelomer Sulfonate)                  | <ul> <li>Used as an alternative to perfluorooctane sulfonic acid (PFOS) and<br/>perfluorooctanoic acid (PFOA) for different purposes such as chrome<br/>mist suppressant (CMS) and active ingredient in firefighting foams.<br/><u>Science Direct<sup>10</sup></u></li> </ul>                                         |
| PFPeS (Perfluoropentane Sulfonic Acid)                 | • Member of a group of perfluorinated chemicals used in many consumer products. PFPeS and other perfluorinated chemicals can cause serious health effects, including cancer, endocrine disruption, accelerated puberty, liver and immune system damage, and thyroid changes. <u>EWG</u> <sup>11</sup>                 |
| FHxSA (Perfluorohexane Sulfonamide)                    | • Member of a group of perfluorinated chemicals used in many consumer products. FHxSA and other perfluorinated chemicals can cause serious health effects, including cancer, endocrine disruption, accelerated puberty, liver and immune system damage, and thyroid changes. <u>EWG</u> <sup>12</sup>                 |
| PFECHS (Perfluoro-4-ethylcyclohexane<br>Sulfonic Acid) | <ul> <li>"8-carbon cyclic PFAS and is considered an analog of</li> <li>PFOS and is used as a replacement for PFOS in various formulations."</li> <li>"The 3M corporation began phasing out production of PFECHS in 2002,"<br/>but current status is unknown. <u>Michigan PFAS Action Team</u><sup>13</sup></li> </ul> |
| PFHpS (Perfluoroheptane Sulfonic Acid)                 | • Member of a group of perfluorinated chemicals used in many consumer products. PFHpS and other perfluorinated chemicals can cause serious health effects, including cancer, endocrine disruption, accelerated puberty, liver and immune system damage, and thyroid changes. <u>EWG</u> <sup>14</sup>                 |

| PFAS Compound                                                      | Description from EWG Human Toxome Project <sup>7</sup> Unless Noted                                                                                                                                                                                                                                                                           |
|--------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| N-EtFOSAA<br>(N-Ethyl Perfluorooctane Sulfonamido Acetic<br>Acid)  | <ul> <li>Member of a group of perfluorinated chemicals used in many consumer<br/>products. N-EtFOSAA and other perfluorinated chemicals can cause<br/>serious health effects, including cancer, endocrine disruption, accelerated<br/>puberty, liver and immune system damage, and thyroid changes. <u>EWG</u><sup>15</sup></li> </ul>        |
| PFEESA<br>(Perfluoro(2-ethoxyethane) Sulfonic acid)                | Limited Information Available                                                                                                                                                                                                                                                                                                                 |
| PFOSA (Perfluorooctanesulfonic acid)                               | <ul> <li>Intermediate breakdown product of some of the active ingredients used<br/>for decades in the original formulation of 3M's Scotchgard stain and<br/>water repellent.</li> <li>Part of the 'PFOS chemistry' phased out of use by 3M in 2000 over health<br/>concerns.</li> <li>Metabolized into PFOS by the body in humans.</li> </ul> |
| PFUnA (Perfluoroundecanoic acid)                                   | <ul> <li>Breakdown product of stain- and grease-proof coatings on food packaging, couches, and carpets.</li> <li>11-carbon version of PFOA; persistent; bioaccumulative.</li> </ul>                                                                                                                                                           |
| 8:2 FTS (8:2 Fluorotelomer Sulfonate)                              | <ul> <li>Member of a group of perfluorinated chemicals used in many consumer<br/>products. 8:2FTS and other perfluorinated chemicals can cause serious<br/>health effects, including cancer, endocrine disruption, accelerated<br/>puberty, liver and immune system damage, and thyroid changes. <u>EWG</u><sup>16</sup></li> </ul>           |
| 5:3 FTCA<br>(2h,2h,3h,3h-Perfluorooctanoic Acid)                   | Limited Information Available                                                                                                                                                                                                                                                                                                                 |
| GenX or HFPO-DA<br>(Hexafluoropropylene Oxide Dimer Acid)          | <ul> <li>Successor to PFOA, formerly used by DuPont to make Teflon.</li> <li>Used for non-stick coatings on food wrappers, outdoor clothing and many other consumer goods. <u>EWG</u><sup>17</sup></li> <li>No restrictions on the production/use in the U.S.</li> </ul>                                                                      |
| PFPrS (Perfluoropropane Sulfonic Acid)                             | Limited Information Available                                                                                                                                                                                                                                                                                                                 |
| N-MeFOSAA<br>(N-Methyl Perfluorooctane Sulfonamido<br>Acetic Acid) | <ul> <li>Member of a group of perfluorinated chemicals used in many consumer<br/>products. NMeFOSAA and other perfluorinated chemicals can cause<br/>serious health effects, including cancer, endocrine disruption, accelerated<br/>puberty, liver and immune system damage, and thyroid changes. <u>EWG</u><sup>18</sup></li> </ul>         |
| 4:2 FTS (4:2 Fluorotelomer Sulfonate)                              | Under Evaluation by EPA <sup>19</sup>                                                                                                                                                                                                                                                                                                         |
| MeFBSA<br>(N-Methylperfluorobutanesulfonamide)                     | Limited Information Available                                                                                                                                                                                                                                                                                                                 |

| PFAS Compound                                                                    | Description from EWG Human Toxome Project <sup>7</sup> Unless Noted                                                                                                                                                                                                                                     |
|----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PFDoA (Perfluorododecanoic acid)                                                 | <ul> <li>Breakdown product of stain- and grease-proof coatings on food packaging, couches, and carpets, including Stainmaster.</li> <li>Highly persistent and bioaccumulative.</li> <li>No restrictions on the production/use in the U.S</li> </ul>                                                     |
| 3:3 FTCA (3-Perfluoropropyl Propanoic Acid)                                      | Limited Information Available                                                                                                                                                                                                                                                                           |
| N-AP-FHxSA<br>(N-(3-dimethylaminopropan-1-yl) perfluoro-1-<br>hexanesulfonamide) | <ul> <li>Limited Information Available</li> </ul>                                                                                                                                                                                                                                                       |
| PFMOPrA or PFMPA<br>(Perfluoro-3-Methoxypropanoic Acid)                          | • Member of a group of perfluorinated chemicals used in many consumer products. PFMOPrA and other perfluorinated chemicals can cause serious health effects, including cancer, endocrine disruption, accelerated puberty, liver and immune system damage, and thyroid changes. <u>EWG</u> <sup>20</sup> |
| FOSAA<br>(Perfluorooctane Sulfonamido Acetic Acid)                               | Limited Information Available                                                                                                                                                                                                                                                                           |
| FOUEA<br>(2H-perfluoro-2-decenoic acid)                                          | Limited Information Available                                                                                                                                                                                                                                                                           |
| NMeFOSE<br>(N-methyl<br>perfluorooctanesulfonamidoethanol                        | • <u>Under Evaluation by EPA</u> <sup>21</sup>                                                                                                                                                                                                                                                          |
| ADONA<br>(4,8-Dioxa-3H-Perfluorononanoate)                                       | • Member of a group of perfluorinated chemicals used in many consumer products. ADONA and other perfluorinated chemicals can cause serious health effects, including cancer, endocrine disruption, accelerated puberty, liver and immune system damage, and thyroid changes. <u>EWG</u> <sup>22</sup>   |

# KEY TAKEAWAYS



ATTALERKEEPER® ALLIANCE INITIATIVE



### In this section we highlight several key findings of the study. More detailed technical findings are discussed later in this report.

- At least one PFAS compound was detected in **95 of the 114** waterways sampled (83%).
- Nineteen of the 114 waterways sampled had no detection of PFAS compounds above the method detection limit (17%).
   Many of these non-detect waterways are rural and relatively undeveloped.
  - It is notable that the laboratory detection level for PFOA and PFOS in this study is significantly higher than EPA's recentlypublished interim <u>Drinking Water Health Advisory Limits<sup>23</sup></u> for those substances (0.004 parts per trillion (ppt) and 0.02 ppt<sup>24</sup>, respectively). It is, thus, possible that waterways with non-detect results are in fact contaminated with these PFAS compounds at levels below the detection limits but above EPA's interim Health Advisory Limits.
- 35 of the 55 individual PFAS compounds tested for in this study were detected in at least one sampled waterway (63.6%).
- PFAS compounds were found at measurable concentrations in at least one waterway in 29 states and D.C. (out of the 34 states and D.C. where monitoring was conducted).
- PFOA and PFOS, both of which are highly persistent in the environment, were the most frequently detected PFAS compounds across the 114 sampled waterways (approximately 70% of samples).
  - **PFOA was detected in 158 out of 228 sampling sites (a 69% detection frequency),** with measured concentrations ranging from <1.0 to 847 ppt. The interim EPA health advisory limit for PFOA is 0.004 ppt.
  - PFOS was detected in 159 sampling sites (a 70% detection frequency), with measured concentrations ranging from <1.0 to 1,364.7 ppt. The interim health advisory limit for PFOS is 0.02 ppt.
  - While these high incidences of PFOA and PFOS contamination in surface waters are extremely troubling, it was also very concerning to find that contamination by lesser-known types of PFAS was also extremely prevalent.
    - For example, PFHxA was found in measurable concentrations at 153 of the 228 sampling sites (67%), with a highest reported concentration of 607.1 ppt, and PFPeA was found in measurable concentrations at 126 of 228 sites (55%), with a highest reported concentration of 166.5 ppt.
    - Many other PFAS compounds were also found at a large number of sites and at extremely high concentrations. See Table 3.
- Potential sources of PFAS contamination identified in this study included landfill sites, airports, industrial sites, and wastewater treatment plants.

- These data plainly demonstrate that Congress and EPA must act with urgency to control and remediate persistent PFAS contamination across the country. Experts estimate that nearly <u>30,000 facilities</u><sup>25</sup> discharge PFAS to surface waters or to wastewater treatment plants (which then discharge their contaminated effluent to surface waters), but no federal limits exist for PFAS releases into surface waters under the Clean Water Act.
  - EPA has <u>proposed</u><sup>26</sup> to designate certain PFAS as hazardous substances under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), *i.e.*, the federal "Superfund" site cleanup law, but this designation has yet to be finalized.
  - EPA also expects to establish drinking water standards for PFOA and PFOS, but not until 2023.
- The current lack of oversight puts the health and safety of communities and ecosystems across the nation at risk and results in costly cleanup and treatment activities to remove PFAS contamination after it has occurred. It also constrains the ability of governments and the public to stop ongoing pollution and clean up existing contamination.

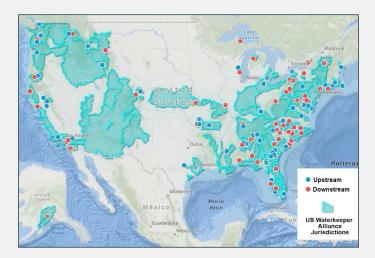



FIGURE 1 Waterkeeper Alliance National PFAS Water Sample Collection Map

# METHODOLOGY



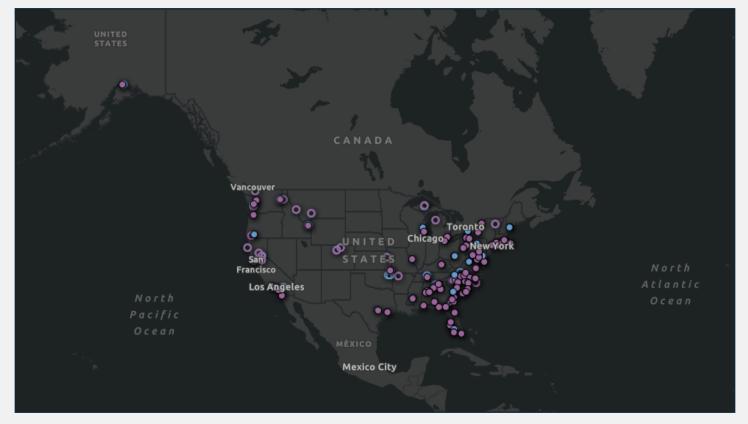
WKA 2022 0196

PHOTO: NARRAGANSETT BAY RIVERKEEPER

### **Water Sample Collection**

All the sample information that is available in this report was collected by licensed Waterkeeper groups throughout the country. All Waterkeeper groups collecting sample information were given training and instruction on water sample collection procedures. Waterkeeper groups collected two samples, generally one upstream and one downstream from an identified potential source of PFAS contamination, see Appendix 4 for details on each sample collected.

- Engaging Waterkeepers (March 7 May 27): Waterkeeper Alliance performed extensive outreach to U.S. Waterkeeper groups starting in March of 2022. Waterkeeper Alliance facilitated all questions and was in contact with many participating Waterkeeper groups throughout the sample collection period of the project.
- **Training**: Waterkeeper Alliance held a webinar for participating Waterkeeper groups on May 10, 2022. During the webinar, U.S. Waterkeepers received instruction in following specific water sample collection procedures for the PFAS water test kit, as well as: (1) guidance on where/how to collect the PFAS surface water samples within their waterways, and (2) a brief overview of the analytical methodologies that were utilized in the project.
- Test Kit Distribution (May 15 July 26): Test kits were shipped directly to Waterkeeper groups and completed kits were shipped back to the laboratory after sample collection.
- **Sample Site Selection**: Two water samples were taken by each Waterkeeper group. The sample collection sites were established prior to sampling within each individual waterway. The upstream sample was selected in a location expected to have minimal PFAS contamination. The downstream location was located in an area of suspected contamination, such as below a potential PFAS pollutant source.
- **Sample Collection**: All samples were collected between May 26 and July 28 of 2022 by 113 individual Waterkeeper groups in 34 states and D.C.. Samples were taken in the upper clear layers of the surface water sources, while dipping the collection cup away from the water's edge and avoiding sediments.
- **Sample Submission**: 113 Waterkeeper groups returned samples to Cyclopure Inc. upon completion. Waterkeeper groups collected and submitted the following information for each sampling location on a provided water test kit data card: (1) the physical location of the sample collected as recorded via GPS handheld receiver, and (2) the date and time of sample collection.


For more detailed information on Cyclopure's analytical methodologies, see Appendices 2 and 3 below, and the technical data report at pages 4 - 5.

# ANALYSIS & FINDINGS

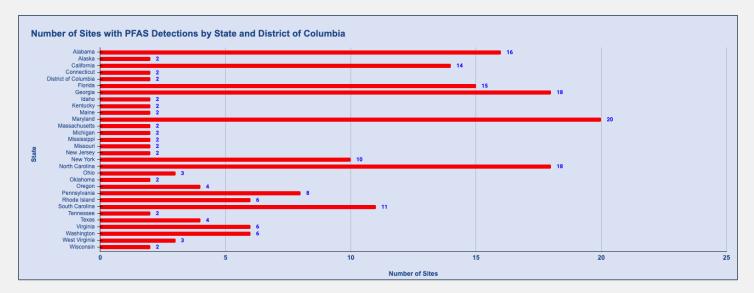
# I. Overview of National and State Levels Results for All 55 PFAS Compounds

PFAS were detected in the surface waters of 29 states and D.C. (of the 34 states and D.C. sampled), and in 95 of the 114 waterways sampled by Waterkeeper groups (83%).

Of the 55 individual PFAS compounds tested for in this study, 35 PFAS compounds were detected in one or more surface waters sampled by Waterkeeper groups in multiple states across the country, see Table 2.



#### FIGURE 2 PFAS Contamination of U.S. Surface Waters


# TABLE 2 Surface Waters by States and D.C. With PFAS Detections for Each of the 35 Detected PFAS Compounds

| PFAS Compound                         | Detected In Surface Water of the Following States                                                                                                                                                                                                                                                                                                   |
|---------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PFOS<br>(Perfluorooctanesulfonate)    | Alabama, Alaska, California, Connecticut, District of Columbia, Florida, Georgia,<br>Kentucky, Maine, Maryland, Massachusetts, Michigan, Mississippi, Missouri, New<br>Jersey, New York, North Carolina, Ohio, Oklahoma, Oregon, Pennsylvania, Rhode<br>Island, South Carolina, Tennessee, Texas, Virginia, Washington, West Virginia,<br>Wisconsin |
| PFOA<br>(Perfluorooctanoic acid)      | Alabama, Alaska, California, Connecticut, District of Columbia, Florida, Georgia,<br>Idaho, Maine, Maryland, Massachusetts, Michigan, Mississippi, Missouri, New<br>Jersey, New York, North Carolina, Ohio, Oregon, Pennsylvania, Rhode Island,<br>South Carolina, Tennessee, Texas, Virginia, West Virginia, Wisconsin                             |
| PFHxA<br>(Perfluorohexanoic acid)     | Alabama, Alaska, California, Connecticut, District of Columbia, Florida, Georgia,<br>Idaho, Kentucky, Maine, Maryland, Massachusetts, Michigan, Mississippi, Missouri,<br>New Jersey, New York, North Carolina, Ohio, Oregon, Pennsylvania, Rhode Island,<br>South Carolina, Tennessee, Texas, Virginia, Washington, West Virginia, Wisconsin       |
| PFPeA<br>(Perfluoro-n-pentanoic Acid) | Alabama, Alaska, California, Connecticut, District of Columbia, Florida, Georgia,<br>Kentucky, Maine, Maryland, Massachusetts, Michigan, Mississippi, Missouri, New<br>Jersey, New York, North Carolina, Ohio, Oregon, Pennsylvania, Rhode Island,<br>South Carolina, Tennessee, Texas, Virginia, West Virginia                                     |
| PFBS<br>(Perfluorobutane sulfonate)   | Alabama, California, District of Columbia, Florida, Georgia, Maryland,<br>Massachusetts, Michigan, Mississippi, MIssouri, New Jersey, New York, North<br>Carolina, Ohio, Oregon, Pennsylvania, Rhode Island, South Carolina, Tennessee,<br>Texas, Virginia, West Virgina, Wisconsin                                                                 |
| PFHpA<br>(Perfluoroheptanoic acid)    | Alabama, California, Connecticut, District of Columbia, Florida, Georgia,<br>Maryland, Massachusetts, Michigan, Mississippi, Missouri, New Jersey, New<br>York, North Carolina, Ohio, Oregon, Pennsylvania, Rhode Island, South Carolina,<br>Tennessee, Texas, Virginia, West Virginia, Wisconsin                                                   |
| PFHxS<br>(Perfluorohexanesulfonate)   | Alabama, Alaska, California, Connecticut, District of Columbia, Florida, Georgia,<br>Maryland, Massachusetts, Michigan, Mississippi, Missouri, New Jersey, New<br>York, North Carolina, Ohio, Oregon, Pennsylvania, Rhode Island, South Carolina,<br>Tennessee, Texas, West Virginia, Wisconsin                                                     |
| PFBA<br>(Perfluorobutyric acid)       | Alabama, California, District of Columbia, Florida, Georgia, Maryland, Michigan,<br>Missouri, New Jersey, New York, North Carolina, Ohio, Oregon, Pennsylvania,<br>Rhode Island, South Carolina, Texas, Wisconsin                                                                                                                                   |
| PFNA<br>(Perfluorononanoic acid)      | Alabama, California, District of Columbia, Florida, Georgia, Maryland,<br>Massachusetts, Michigan, Missouri, New Jersey, New York, North Carolina,<br>Pennsylvania, Rhode Island                                                                                                                                                                    |

| PFAS Compound                                                     | Detected In Surface Water of the Following States                                                                                                   |
|-------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| FBSA<br>(Perfluorobutane sulfonamide)                             | Alabama, California, Florida, Georgia, Maryland, Missouri, New York, North<br>Carolina, Ohio, Oregon, Pennsylvania, Rhode Island, West Virginia     |
| PFDA<br>(Perfluorodecanoic acid)                                  | Alabama, California, Georgia, Maryland, Missouri, New York, North Carolina,<br>Oregon, Pennsylvania, Rhode Island, South Carolina, Tennessee, Texas |
| 6:2 FTS<br>(6:2 Fluorotelomer Sulfonate)                          | California, Connecticut, Florida, Georgia, Maryland, Missouri, New York, North<br>Carolina, Ohio, Pennsylvania, Rhode Island, South Carolina, Texas |
| PFPeS<br>(Perfluoropentane Sulfonic Acid)                         | California, Florida, Georgia, Maryland, Missouri, New York, North Carolina, Ohio,<br>Pennsylvania, Rhode Island                                     |
| FHxSA<br>(Perfluorohexane Sulfonamide)                            | California, Florida, Georgia, Maryland, Missouri, New York, North Carolina, Ohio,<br>Pennsylvania, Rhode Island, West Virginia                      |
| PFECHS<br>(Perfluoro-4-ethylcyclohexane Sulfonic<br>Acid)         | Florida, Georgia, Maryland, Michigan, Missouri, North Carolina, Ohio,<br>Pennsylvania, Rhode Island                                                 |
| PFHpS<br>(Perfluoroheptane Sulfonic Acid)                         | Califorrnia, Georgia, Maryland, Missouri, New York, Ohio, Pennsylvania, Rhode<br>Island                                                             |
| N-EtFOSAA<br>(N-Ethyl Perfluorooctane Sulfonamido<br>Acetic Acid) | Alabama, Florida, Georgia, Michigan, Pennsylvania, Rhode Island, Tennessee                                                                          |
| PFEESA<br>(Perfluoro(2-ethoxyethane) Sulfonic<br>acid)            | Maryland, Missouri, New Jersey, Ohio, Pennsylvania                                                                                                  |
| PFOSA<br>(Perfluorooctanesulfonic acid)                           | Alabama, Florida, Georgia, Maryland, Pennsylvania                                                                                                   |
| PFUnA<br>(Perfluoroundecanoic acid)                               | Maryland, New York, Rhode Island                                                                                                                    |
| 8:2 FTS<br>(8:2 Fluorotelomer Sulfonate)                          | Florida, Maryland, Missouri, New York, Pennsylvania                                                                                                 |
| 5:3 FTCA<br>(2h,2h,3h,3h-Perfluorooctanoic Acid)                  | Florida, Maryland, Pennsylvania, Rhode Island                                                                                                       |
| GenX or HFPO-DA<br>(Hexafluoropropylene Oxide Dimer Acid)         | North Carolina, Oklahoma, South Carolina                                                                                                            |

| PFAS Compound                                                                   | Detected In Surface Water of the Following States |
|---------------------------------------------------------------------------------|---------------------------------------------------|
| PFPrS<br>(Perfluoropropane Sulfonic Acid)                                       | Maryland, Missouri, Pennsylvania, Rhode Island    |
| N-MeFOSAA<br>(N-Methyl Perfluorooctane Sulfonamido<br>Acetic Acid)              | Georgia, North Carolina, Tennessee                |
| 4:2 FTS<br>(4:2 Fluorotelomer Sulfonate)                                        | Maryland, Pennsylvania                            |
| MeFBSA<br>(N-Methylperfluorobutanesulfonamide)                                  | Georgia, Pennsylvania                             |
| PFDoA<br>(Perfluorododecanoic acid)                                             | Maryland                                          |
| 3:3 FTCA<br>(3-Perfluoropropyl Propanoic Acid)                                  | Pennsylvania                                      |
| N-AP-FHxSA<br>(N-(3-dimethylaminopropan-1-yl)<br>perfluoro-1-hexanesulfonamide) | Pennsylvania                                      |
| PFMOPrA or PFMPA<br>(Perfluoro-3-Methoxypropanoic Acid)                         | Maryland                                          |
| FOSAA<br>(Perfluorooctane Sulfonamido Acetic<br>Acid)                           | Pennsylvania                                      |
| FOUEA<br>(2H-perfluoro-2-decenoic acid)                                         | Florida                                           |
| NMeFOSE<br>(N-methyl<br>perfluorooctanesulfonamidoethanol)                      | Michigan                                          |
| ADONA(4,8-Dioxa-3H-<br>Perfluorononanoate)                                      | Tennessee                                         |

For example, PFAS compounds were detected in surface waters at 20 sampling sites located in Maryland, 18 sites located in North Carolina, 18 sites located in Georgia, and 16 sites located in Alabama, see Figure 3.



#### FIGURE 3

Number of Water Sample Sites With PFAS Detections by States and D.C.

PFAS compounds were detected in surface waters at very high levels. Concentrations of PFAS compounds exceeded EWG's Health Guideline of 1 ppt at every site where PFAS was detected. There are only EPA Drinking Water Health Advisory Levels for four PFAS compounds (PFOA, PFOS, GenX, and PFBS), but PFOA and PFOS exceeded those levels in every sample where those compounds were detected. There are no other federal standards in place to prevent and clean up PFAS pollution in the nation's waters. See Table 3.

# TABLE 3 PFAS Compounds Detections and Exceedances of National Standards

| PFAS Compound                                                  | # of<br>Detections | % of Total<br>Samples with<br>Detections<br>(Out of 228) | Federal<br>Water Quality<br>Criteria or<br>Drinking Water<br>Standard? | # of Samples<br>Above EPA<br>Health<br>Advisory Level<br>(HAL) | # Samples<br>Above EWG<br>Health<br>Guideline<br>(1 ppt) |
|----------------------------------------------------------------|--------------------|----------------------------------------------------------|------------------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------|
| PFOS<br>(Perfluorooctanesulfonate)                             | 159                | 69.7%                                                    | NO                                                                     | 159                                                            | 159                                                      |
| PFOA<br>(Perfluorooctanoic acid)                               | 158                | 69.2%                                                    | NO                                                                     | 158                                                            | 158                                                      |
| PFHxA<br>(Perfluorohexanoic acid)                              | 153                | 67.1%                                                    | NO                                                                     | No HAL                                                         | 153                                                      |
| PFPeA<br>(Perfluoro-n-pentanoic Acid)                          | 126                | 55.2%                                                    | NO                                                                     | No HAL                                                         | 126                                                      |
| PFBS<br>(Perfluorobutane sulfonate)                            | 118                | 51.8%                                                    | NO                                                                     | 1                                                              | 118                                                      |
| PFHpA<br>(Perfluoroheptanoic acid)                             | 111                | 48.7%                                                    | NO                                                                     | No HAL                                                         | 111                                                      |
| PFHxS<br>(Perfluorohexanesulfonate)                            | 94                 | 41.2%                                                    | NO                                                                     | No HAL                                                         | 94                                                       |
| PFBA<br>(Perfluorobutyric acid)                                | 67                 | 29.3%                                                    | NO                                                                     | No HAL                                                         | 67                                                       |
| PFNA<br>(Perfluorononanoic acid)                               | 35                 | 15.3%                                                    | NO                                                                     | No HAL                                                         | 35                                                       |
| FBSA (Perfluorobutane sulfonamide)                             | 31                 | 13.6%                                                    | NO                                                                     | No HAL                                                         | 31                                                       |
| PFDA<br>(Perfluorodecanoic acid)                               | 27                 | 11.8%                                                    | NO                                                                     | No HAL                                                         | 27                                                       |
| 6:2 FTS<br>(6:2 Fluorotelomer Sulfonate)                       | 21                 | 9.2%                                                     | NO                                                                     | No HAL                                                         | 21                                                       |
| PFPeS<br>(Perfluoropentane Sulfonic Acid)                      | 18                 | 7.9%                                                     | NO                                                                     | No HAL                                                         | 18                                                       |
| FHxSA<br>(Perfluorohexane Sulfonamide)                         | 13                 | 5.7%                                                     | NO                                                                     | No HAL                                                         | 13                                                       |
| PFECHS<br>(Perfluoro-4-ethylcyclohexane Sulfonic Acid)         | 9                  | 3.9%                                                     | NO                                                                     | No HAL                                                         | 9                                                        |
| PFHpS<br>(Perfluoroheptane Sulfonic Acid)                      | 9                  | 3.9%                                                     | NO                                                                     | No HAL                                                         | 9                                                        |
| N-EtFOSAA<br>(N-Ethyl Perfluorooctane Sulfonamido Acetic Acid) | 8                  | 3.5%                                                     | NO                                                                     | No HAL                                                         | 8                                                        |

| PFAS Compound                                                                     | # of<br>Detections | % of Total<br>Samples with<br>Detections<br>(Out of 228) | Federal<br>Water Quality<br>Criteria or<br>Drinking Water<br>Standard? | # of Samples<br>Above EPA<br>Health<br>Advisory Level<br>(HAL) | # Samples<br>Above EWG<br>Health<br>Guideline<br>(1 ppt) |
|-----------------------------------------------------------------------------------|--------------------|----------------------------------------------------------|------------------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------|
| PFEESA<br>(Perfluoro(2-ethoxyethane) Sulfonic acid)                               | 6                  | 2.6%                                                     | NO                                                                     | No HAL                                                         | 6                                                        |
| PFOSA<br>(Perfluorooctanesulfonic acid)                                           | 6                  | 2.6%                                                     | NO                                                                     | No HAL                                                         | 6                                                        |
| PFUnA<br>(Perfluoroundecanoic acid)                                               | 6                  | 2.6%                                                     | NO                                                                     | No HAL                                                         | 6                                                        |
| 8:2 FTS<br>(8:2 Fluorotelomer Sulfonate)                                          | 5                  | 2.2%                                                     | NO                                                                     | No HAL                                                         | 5                                                        |
| 5:3 FTCA<br>(2h,2h,3h,3h-Perfluorooctanoic Acid)                                  | 4                  | 1.8%                                                     | NO                                                                     | No HAL                                                         | 4                                                        |
| GenX or HFPO-DA<br>(Hexafluoropropylene Oxide Dimer Acid)                         | 4                  | 1.8%                                                     | NO                                                                     | 1                                                              | 4                                                        |
| PFPrS<br>(Perfluoropropane Sulfonic Acid)                                         | 4                  | 1.8%                                                     | NO                                                                     | No HAL                                                         | 4                                                        |
| N-MeFOSAA<br>(N-Methyl Perfluorooctane Sulfonamido Acetic<br>Acid)                | 3                  | 1.3%                                                     | NO                                                                     | No HAL                                                         | 3                                                        |
| 4:2 FTS<br>(4:2 Fluorotelomer Sulfonate)                                          | 2                  | 0.8%                                                     | NO                                                                     | No HAL                                                         | 2                                                        |
| MeFBSA<br>(N-Methylperfluorobutanesulfonamide)                                    | 2                  | 0.8%                                                     | NO                                                                     | No HAL                                                         | 2                                                        |
| PFDoA<br>(Perfluorododecanoic acid)                                               | 2                  | 0.8%                                                     | NO                                                                     | No HAL                                                         | 2                                                        |
| 3:3 FTCA<br>(3-Perfluoropropyl Propanoic Acid)                                    | 1                  | 0.4%                                                     | NO                                                                     | No HAL                                                         | 1                                                        |
| N-AP-FHxSA<br>(N-(3-dimethylaminopropan-1-yl) perfluoro-1-hex-<br>anesulfonamide) | 1                  | 0.4%                                                     | NO                                                                     | No HAL                                                         | 1                                                        |
| PFMOPrA or PFMPA<br>(Perfluoro-3-Methoxypropanoic Acid)                           | 1                  | 0.4%                                                     | NO                                                                     | No HAL                                                         | 1                                                        |
| FOSAA<br>(Perfluorooctane Sulfonamido Acetic Acid)                                | 1                  | 0.4%                                                     | NO                                                                     | No HAL                                                         | 1                                                        |
| FOUEA<br>(2H-perfluoro-2-decenoic acid)                                           | 1                  | 0.4%                                                     | NO                                                                     | No HAL                                                         | 1                                                        |
| NMeFOSE<br>(N-methyl perfluorooctanesulfonamidoethanol)                           | 1                  | 0.4%                                                     | NO                                                                     | No HAL                                                         | 1                                                        |
| ADONA (4,8-Dioxa-3H-Perfluorononanoate)                                           | 1                  | 0.4%                                                     | NO                                                                     | No HAL                                                         | 1                                                        |

# Surface water PFAS concentrations were greater than EPA's Health Advisory Levels for these four PFAS compounds in one or more samples as shown below:

- **PFOS was detected above the EPA Interim Health Advisory Level of 0.02 ppt in 159 samples taken in waterways located in 28 states and D.C,** see Tables 2 - 3. The highest level detected was 1,364.7 ppt in a sample from Piscataway Creek, Maryland taken by Potomac Riverkeeper. See Table 4 below.
- PFOA was detected above the EPA Interim Health Advisory Level of 0.004 ppt in 158 samples taken in waterways located in 26 states and D.C., see Tables 2 - 3. The highest level detected was 847 ppt in a sample from Kreutz Creek, Pennsylvania taken by the Lower Susquehanna Riverkeeper. See Table 4 below.
- GenX was detected above the EPA Health Advisory Level of 10 ppt in one sample from the Cape Fear River, North Carolina taken by Cape Fear Riverkeeper. See Tables 2 - 4.
- PFBS was detected above the EPA Health Advisory Level of 2,000 ppt in one sample from Kreutz Creek, Pennsylvania taken by the Lower Susquehanna Riverkeeper. See Tables 2 4.

Multiple PFAS compounds were detected in the majority of the water samples, adding to the total concentration of PFAS in the waterway and increasing the likelihood of harm, see "Appendix 4". The five most detected PFAS Compounds were frequently detected with other PFAS compounds, which frequently occurred at high concentrations as well. See Table 4 for the Top 5 Detected PFAS and "Appendix 4" for all PFAS detections.

# TABLE 4 Maximum Individual Concentrations of the Top 5 Detected PFAS in States With At Least One Detection

# Highest Detections in Each State in Red<sup>27</sup>

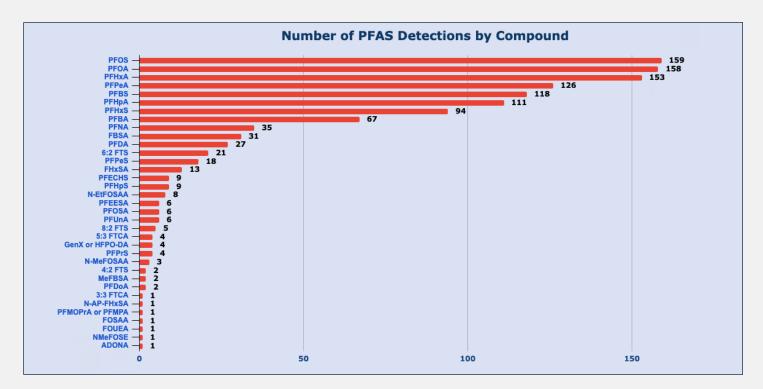
| State                                  | Waterkeeper                                    | Waterbody                                    | Max.<br>PFOA in<br>ppt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Max.<br>PFOS in<br>ppt                                    | Max.<br>PFHxA in<br>ppt | Max.<br>PFPeA in<br>ppt | Max.<br>PFBS in<br>ppt |
|----------------------------------------|------------------------------------------------|----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|-------------------------|-------------------------|------------------------|
|                                        | Black Warrior Riverkeeper                      | Black Warrior River                          | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.9                                                       | 1.8                     | 2.2                     | 1.3                    |
|                                        | Cahaba Riverkeeper                             | Cahaba River                                 | 3.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4.4                                                       | 4.2                     | 6                       | 5.7                    |
|                                        | Choctawhatchee<br>Riverkeeper                  | Pea River                                    | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.3                                                       | ND                      | ND                      | ND                     |
| Alabama                                | Coosa Riverkeeper                              | Neely Henry Lake on the<br>Coosa River       | 16.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | PFOS in<br>pptPFHxA in<br>pptPFPeA<br>ppt3.91.82.24.44.26 | 16.9                    | 48.7                    |                        |
| Alabama                                | Hurricane Creekkeeper                          | Hurricane Creek                              | 1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.4                                                       | 1.3                     | ND                      | ND                     |
|                                        |                                                | Little River Canyon                          | 1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.4                                                       | ND                      | ND                      | 2.3                    |
|                                        | Little River Waterkeeper                       | West Fork of Little River                    | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ND                                                        | ND                      | ND                      | ND                     |
|                                        | Mobile Baykeeper                               | Mobile River                                 | 4.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6.5                                                       | 3.4                     | 3.8                     | 8.4                    |
|                                        | Waterkeepers Alabama                           | Buck Creek                                   | 5.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.8                                                       | 7.6                     | 16.8                    | 9.2                    |
| Alaska                                 | Cook Inletkeeper                               | Ship Creek                                   | 2.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7.1                                                       | 2.4                     | 1.5                     | ND                     |
|                                        |                                                | Santa Ana River                              | 8.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7.7                                                       | 12.5                    | 10.3                    | 5.2                    |
|                                        | Inland Empire Waterkeeper                      | Temescal Creek                               | 26.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 20                                                        | 21.5                    | 11                      | 11                     |
|                                        | Los Angeles Waterkeeper                        | Los Angeles River                            | 12.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4.3                                                       | 13.2                    | 4.2                     | 3.9                    |
|                                        | Orange County Coastkeeper                      | San Diego Creek                              | 61.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 34.4                                                      | 57.9                    | 28.9                    | 21.2                   |
| California                             | Russian Riverkeeper                            | Healdsburg Pit discharge to<br>Russian River | 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ND                                                        | 1.2                     | 2.2                     | 1                      |
|                                        |                                                | Russian River                                | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ND                                                        | ND                      | ND                      | ND                     |
|                                        | San Diego Coastkeeper                          | Chollas Creek                                | 16.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 22                                                        | 15.6                    | 10.6                    | 10.4                   |
|                                        | Santa Barbara<br>Channelkeeper                 | Ventura River                                | 3.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.5                                                       | 4                       | 6.7                     | 2.8                    |
| Connecticut                            | Long Island Soundkeeper                        | Naugatuck River                              | 4.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9.5                                                       | 4.5                     | 3.4                     | ND                     |
| District of                            |                                                | Anacostia River                              | 3.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5.1                                                       | 3.2                     | 3.3                     | 2.1                    |
| Columbia                               | Anacostia Riverkeeper                          | Kingman Lake                                 | 4.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7.7                                                       | 4.6                     | 3.7                     | 3                      |
|                                        | Apalachicola Riverkeeper                       | Apalachicola River                           | 6.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4.2                                                       | 2.7                     | 2.3                     | 1.3                    |
| Connecticut<br>District of<br>Columbia | Caluar Watarkaanan                             | Caloosahatchee River                         | 4.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5.6                                                       | 2.4                     | ND                      | 3.2                    |
|                                        | Calusa Waterkeeper                             | Shallow Groundwater                          | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ND                                                        | ND                      | ND                      | ND                     |
|                                        | Collier County Warerkeeper                     | Golden Gate Main Canal                       | ppt         ppt         ppt         p           2         3.9         1.           3.3         4.4         4           ND         1.3         N           16.8         27.8         14           11.1         1.4         1.           1.1         1.4         1.           1.1         1.4         N           ND         ND         ND           4.3         6.5         3           5.1         3.8         7           2.4         7.1         2           8.9         7.7         12           61.5         34.4         5           12.9         4.3         1           61.5         34.4         5           10         ND         N           16.6         22         19           3.8         1.5         4           3.5         5.1         3           4.2         9.5         4           3.5         5.1         3           4.6         7.7         4           6.5         4.2         2           10         58.5         2 | 1.8                                                       | 1.9                     | 3.2                     |                        |
|                                        | Collier County Warerkeeper                     | Gordon River                                 | 4.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8.5                                                       | 2.7                     | 2.1                     | 3.6                    |
| Florida                                | Miami Waterkeener                              | Little River                                 | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 58.5                                                      | 27                      | 31.8                    | 6.1                    |
|                                        | Miami Waterkeeper                              | Spur Canal                                   | 5.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 21.3                                                      | 7.2                     | 6.6                     | 4.5                    |
|                                        | St. Johns Riverkeeper                          | St. Johns River                              | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.3                                                       | 1.9                     | 1.7                     | 1.8                    |
|                                        | Suncoast Waterkeeper                           | Bowlees Creek                                | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 29.6                                                      | 17.5                    | 19                      | 13.8                   |
|                                        | Tampa Bay Waterkeeper                          | Hillsborough River                           | 3.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10.1                                                      | 3.2                     | 2.8                     | 4.1                    |
|                                        | Waterkeepers Florida -<br>Suwannee Riverkeeper | Withlacoochee River                          | 1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.8                                                       | 1.5                     | 1.2                     | 1.8                    |

| State                                | Waterkeeper                                    | Waterbody                            | Max.<br>PFOA in<br>ppt | Max.<br>PFOS in<br>ppt | Max.<br>PFHxA in<br>ppt | Max.<br>PFPeA in<br>ppt | Max.<br>PFBS in<br>ppt |
|--------------------------------------|------------------------------------------------|--------------------------------------|------------------------|------------------------|-------------------------|-------------------------|------------------------|
|                                      | Altamaha Coastkeeper                           | Altamaha River                       | 2.3                    | 4.4                    | 2.7                     | 2.7                     | 2.3                    |
|                                      | Altamaha Riverkeeper                           | Ohoopee River                        | 1.9                    | 1.1                    | ND                      | ND                      | 4.5                    |
| Georgia<br>daho<br>Kentucky<br>Aaine | Chattahoochee Riverkeeper                      | Chattahoochee River                  | 2.5                    | 2.4                    | 2.9                     | 1.9                     | 1.7                    |
|                                      | Lower Savannah River                           | Savannah River                       | 2.7                    | 4                      | 1.4                     | ND                      | 1.3                    |
|                                      | Alliance, A Waterkeeper<br>Alliance Affiliate  | Tributary to Rocky Creek             | 3                      | 7.5                    | 1.3                     | ND                      | ND                     |
| Coordia                              | Ogeechee Riverkeeeper                          | Little Lotts Creek                   | 3.7                    | 6.7                    | 14.5                    | 17.3                    | 3                      |
| Georgia                              | Satilla Riverkeeper                            | Little Hurricane Creek               | 1.7                    | 1.8                    | 1.2                     | 1.1                     | ND                     |
|                                      | Savannah Riverkeeper                           | Savannah River at Lock and<br>Dam Rd | 6.1                    | 14.1                   | 10.3                    | 7                       | 4.9                    |
|                                      | Suwannee Riverkeeper                           | Withlacoochee River                  | 2.2                    | 9.1                    | 3                       | 2.4                     | 3.2                    |
|                                      | Upper Coosa Riverkeeper                        | Conasauga River                      | 75.7                   | 82                     | 48.8                    | 64                      | 207.4                  |
|                                      | Waterkeepers Florida -<br>Suwannee Riverkeeper | Withlacoochee River                  | 1.4                    | 4.9                    | 2.5                     | 1.7                     | 2.2                    |
| Idaho                                | Snake River Waterkeeper                        | Henry's Fork                         | 1.3                    | ND                     | 1.4                     | ND                      | ND                     |
| Kentucky                             | Kentucky Riverkeeper                           | Kentucky River                       | ND                     | 1.6                    | 1.4                     | 1.4                     | ND                     |
| Maine                                | Casco Baykeeper                                | Presumpscot River                    | 1.8                    | 1.8                    | 1.1                     | 1.1                     | ND                     |
|                                      | Assateague Coastkeeper                         | Walston Branch                       | 3.5                    | ND                     | 6                       | 5.3                     | ND                     |
|                                      | Baltimore Harbor<br>Waterkeeper                | Jones Falls                          | 4.2                    | 10.7                   | 3.6                     | 3.3                     | 1.9                    |
|                                      | Chester Riverkeeper                            | Morgan Creek                         | 1.3                    | 2                      | 1.4                     | ND                      | ND                     |
|                                      | Choptank Riverkeeper                           | La Trappe Creek                      | 5.6                    | 2.6                    | 14.5                    | 9                       | 5.2                    |
|                                      | Gunpowder Riverkeeper                          | Little Gunpowder Falls               | 2.3                    | 3.1                    | 2.2                     | 2                       | 1.7                    |
|                                      |                                                | Mill Creek                           | 5.2                    | 2.2                    | 2.6                     | 1.4                     | 4.7                    |
| Maryland                             | Miles and Wye Riverkeeper                      | Tributary to Mill Creek              | ND                     | ND                     | ND                      | ND                      | ND                     |
|                                      | Potomac Riverkeeper                            | Piscataway Creek                     | 282.8                  | 1364.7                 | 194.6                   | 86.2                    | 48.2                   |
|                                      | Construct Diverties non                        | Dyer Creek                           | ND                     | ND                     | ND                      | ND                      | ND                     |
|                                      | Sassafras Riverkeeper                          | Mill Creek                           | 1.3                    | ND                     | 1.1                     | ND                      | ND                     |
|                                      | Severn Riverkeeper                             | Jabez Branch                         | 2.8                    | 3                      | 2.9                     | 2.2                     | 1.2                    |
|                                      | South, West & Rhode<br>Riverkeeper             | Church Creek                         | 4.1                    | 4.9                    | 3.7                     | 3.3                     | 1.4                    |
|                                      |                                                | North Head Long Pond                 | 6.5                    | 5.1                    | 3.1                     | 1.2                     | 1.1                    |
| Massachusetts                        | Nantucket Waterkeeper                          | Tributary to Madaket<br>Harbor       | 6.3                    | 7.3                    | 2.5                     | ND                      | ND                     |
|                                      |                                                | Ecorse River                         | 3.1                    | 17.9                   | 2.4                     | ND                      | 1.9                    |
| Michigan                             | Detroit Riverkeeper                            | Rouge River                          | 1                      | 2.2                    | 2.3                     | 1.4                     | ND                     |
| Mississippi                          | Pearl Riverkeeper                              | Pearl River                          | 2.5                    | 3.6                    | 2.6                     | 2.7                     | 1.8                    |
| Missouri                             | Missouri Confluence<br>Waterkeeper             | Coldwater Creek                      | 17                     | 125.5                  | 24.7                    | 18.3                    | 11.6                   |
|                                      |                                                | Hackensack River                     | 7.9                    | 5.2                    | 2.8                     | 2.7                     | 1.6                    |
| New Jersey                           | Hackensack Riverkeeper                         | Lake Tappan / Hackensack<br>River    | 7.8                    | 6.7                    | 3                       | 2                       | 1.9                    |

| State          | Waterkeeper                                                             | Waterbody                        | Max.<br>PFOA in<br>ppt | Max.<br>PFOS in<br>ppt | Max.<br>PFHxA in<br>ppt | Max.<br>PFPeA in<br>ppt | Max.<br>PFBS in<br>ppt |
|----------------|-------------------------------------------------------------------------|----------------------------------|------------------------|------------------------|-------------------------|-------------------------|------------------------|
| New York       | Buffalo Niagara<br>Waterkeeper                                          | Cayuga Creek                     | 10.3                   | 147.7                  | 17.9                    | 12                      | 5.2                    |
|                | Chautauqua-Conewango<br>Consortium, a Waterkeeper<br>Alliance Affiliate | Chadakoin River                  | 1.7                    | 1.8                    | 1.2                     | ND                      | ND                     |
|                | Peconic Baykeeper                                                       | Peconic River                    | 3.9                    | 12                     | 2.5                     | 2.2                     | ND                     |
|                | Seneca Lake Guardian,<br>a Waterkeeper Alliance<br>Affiliate            | Black Brook                      | 12.2                   | 2.6                    | 7.6                     | 3.4                     | 1.5                    |
|                | Upper St. Lawrence<br>Riverkeeper                                       | St. Lawrence River               | 1.9                    | 2.3                    | 1.5                     | 1.2                     | ND                     |
| North Carolina | Broad Riverkeeper                                                       | Buffalo Creek                    | 2                      | 1.1                    | 2.8                     | ND                      | ND                     |
|                | Cape Fear Riverkeeper                                                   | Cape Fear River                  | 7.4                    | 17.3                   | 6.7                     | 6.9                     | 5                      |
|                | Green Riverkeeper                                                       | White Oak Creek                  | 1.3                    | 1.2                    | ND                      | 1.6                     | ND                     |
|                | Haw Riverkeeper                                                         | South Buffalo Creek              | 15.3                   | 38                     | 61.5                    | 52.8                    | 27.3                   |
|                | Lumber Riverkeeper                                                      | Aberdeen Creek                   | 4.6                    | 3.4                    | 3.8                     | 4.3                     | 1.3                    |
|                | Neuse Riverkeeper                                                       | Neuse River                      | 5.6                    | 10.3                   | 4.4                     | 3.8                     | 2.8                    |
|                | Pamlico-Tar Riverkeeper                                                 | Tar River                        | 2.6                    | 4.1                    | 1.2                     | ND                      | 1.2                    |
|                | Watauga Riverkeeper                                                     | South Fork New River             | 1.3                    | 3.3                    | 1                       | 2.1                     | 1.5                    |
|                | Yadkin Riverkeeper                                                      | Muddy Creek                      | 5.1                    | 11.6                   | 11.5                    | 7                       | 2                      |
| Ohio           | Lake Erie Waterkeeper                                                   | Cairl Creek                      | 8.4                    | 98.3                   | 5                       | 4.1                     | 3.3                    |
|                |                                                                         | Tributary to Cairl Creek         | 3.8                    | 5.6                    | 1.5                     | ND                      | 1.8                    |
|                | West Virginia Headwaters<br>Waterkeeper                                 | Ohio River                       | 6.8                    | 2                      | 1.7                     | 1.1                     | 1.3                    |
| Oklahoma       | Tar Creekkeeper                                                         | Tar Creek                        | ND                     | 1.4                    | ND                      | ND                      | ND                     |
| Oregon         | Rogue Riverkeeper                                                       | Rogue River                      | ND                     | ND                     | ND                      | ND                      | ND                     |
|                | Tualatin Riverkeepers                                                   | Tualatin River                   | 2.7                    | 6                      | 2.2                     | 2.3                     | 1.9                    |
| Pennsylvania   | Lower Susquehanna<br>Riverkeeper                                        | Kreutz Creek                     | 847                    | 374.3                  | 607.1                   | 166.5                   | 2083.3                 |
|                | Middle Susquehanna<br>Riverkeeper                                       | Glade Run                        | 1.1                    | 1.1                    | 1.3                     | ND                      | ND                     |
|                |                                                                         | West Branch Susquehanna<br>River | 1                      | ND                     | 1                       | ND                      | ND                     |
|                | Three Rivers Waterkeeper                                                | Allegheny River                  | 1.6                    | 3.5                    | ND                      | ND                      | 1.1                    |
|                | Upper Allegheny River<br>Project, a Waterkeeper<br>Alliance Affiliate   | Tunungwant Creek                 | 1.3                    | 1.7                    | ND                      | 1.3                     | ND                     |
|                |                                                                         | West Branch Tunungwant<br>Creek  | ND                     | ND                     | ND                      | 1.1                     | ND                     |
| Rhode Island   | Narragansett Bay<br>Riverkeeper                                         | Pawtuxet River                   | 7.8                    | 8.9                    | 11.7                    | 12.3                    | 2.2                    |
|                | Narragansett Baykeeper                                                  | Buckeye Brook                    | 7.1                    | 4                      | 4                       | 3.1                     | 3.7                    |
|                |                                                                         | Spring Green Pond                | 29                     | 34.5                   | 63.1                    | 60.7                    | 6.6                    |
|                | South County Coastkeeper                                                | Mastuxet Brook                   | 2.9                    | 1.7                    | 1.7                     | 1.9                     | 2.2                    |

| State          | Waterkeeper                                                             | Waterbody                      | Max.<br>PFOA in<br>ppt | Max.<br>PFOS in<br>ppt | Max.<br>PFHxA in<br>ppt | Max.<br>PFPeA in<br>ppt | Max.<br>PFBS in<br>ppt |
|----------------|-------------------------------------------------------------------------|--------------------------------|------------------------|------------------------|-------------------------|-------------------------|------------------------|
|                | Disch Commit Discussion                                                 | Boggy Swamp                    | 2.4                    | 3.2                    | 1.5                     | 1.9                     | 1                      |
|                | Black-Sampit Riverkeeper                                                | Sampit River                   | 4.5                    | 6.7                    | 2.6                     | 1.9                     | 1.5                    |
|                | Catawba Riverkeeper                                                     | Catawba River                  | 4.8                    | 3.6                    | 12.2                    | 15.4                    | 1.4                    |
|                | Charleston Waterkeeper                                                  | Bushy Park Reservoir           | 4.3                    | 6.5                    | 5.2                     | 6                       | 2.5                    |
| South Carolina |                                                                         | Chicken Creek                  | 4.2                    | 5.8                    | 4                       | 2.2                     | 2.4                    |
|                | Congaree Riverkeeper                                                    | Saluda River                   | 4                      | 6.4                    | 3.5                     | 3.3                     | 2                      |
|                | Savannah Riverkeeper                                                    | Savannah River                 | 2.7                    | 1.9                    | 1.7                     | ND                      | 1.6                    |
|                | Waccamaw Riverkeeper                                                    | South Prong Steritt Swamp      | 3.6                    | 1.7                    | 3.1                     | 2.3                     | 2.4                    |
|                |                                                                         | Steritt Swamp                  | 5.8                    | 2.2                    | 5.2                     | 3.5                     | 2.2                    |
| Tennessee      | Tennessee Riverkeeper                                                   | Jones Creek                    | 7.1                    | 7.2                    | 5.9                     | 6.8                     | 1.8                    |
|                |                                                                         | Lick Creek                     | ND                     | ND                     | ND                      | ND                      | ND                     |
| Texas          | Bayou City Waterkeeper                                                  | Whiteoak Bayou                 | 4.7                    | 4.6                    | 10.2                    | 9.5                     | 3                      |
|                | Environmental Stewardship,<br>a Waterkeeper Alliance<br>Affiliate       | Colorado River                 | 2.7                    | 4.2                    | 3.8                     | 3.9                     | 1.9                    |
| Virginia       | Dan RiverKeeper                                                         | Dan River                      | 1.9                    | 2.2                    | 1.2                     | ND                      | ND                     |
|                | James Riverkeeper                                                       | Gravelly Run                   | 2.3                    | 1.8                    | 2.1                     | 1.4                     | 1.3                    |
|                | Shenandoah Riverkeeper                                                  | South Fork Shenandoah<br>River | ND                     | ND                     | 1.6                     | 1.9                     | ND                     |
| Washington     | Deschutes Estuary<br>Restoration Team, a Puget<br>Soundkeeper Affiliate | Deschutes River                | ND                     | ND                     | 1.2                     | ND                      | ND                     |
|                | Puget Soundkeeper                                                       | Duwamish River                 | ND                     | 1.8                    | ND                      | ND                      | ND                     |
|                | Spokane Riverkeeper                                                     | Spokane River                  | ND                     | 1.7                    | 1.6                     | ND                      | ND                     |
| West Virginia  | Upper Potomac Riverkeeper                                               | Opequon Creek                  | 2.6                    | 14.6                   | 4.8                     | 3.6                     | 3.7                    |
|                | West Virginia Headwaters<br>Waterkeeper                                 | Ohio River                     | 3.3                    | 1.6                    | 1.4                     | ND                      | 1.6                    |
| Wisconsin      | Milwaukee Riverkeeper                                                   | East Branch Milwaukee<br>River | 1                      | ND                     | 1                       | ND                      | ND                     |
|                |                                                                         | Milwaukee River                | 3                      | 3.1                    | 2.5                     | ND                      | 1.7                    |




# The highest total number of PFAS detections in surface water samples were found in the following states, see Table 5.

- Maryland had 134 PFAS detections, including 25 different PFAS compounds.
- Georgia had 127 PFAS detections, including 20 different PFAS compounds.
- Florida had 119 PFAS detections, including 19 different PFAS compounds.
- North Carolina had 111 PFAS detections, including 16 different PFAS compounds
- California had 103 PFAS detections, including 15 different PFAS compounds.
- Alabama had 96 PFAS detections, including 13 different PFAS compounds.

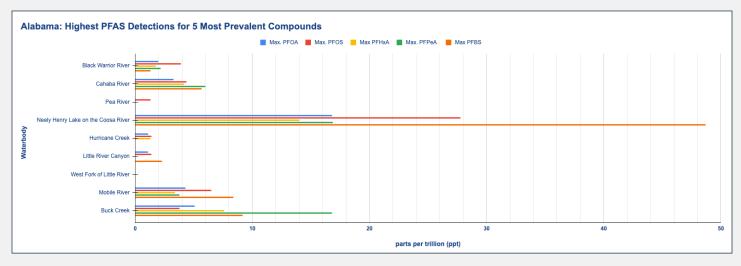
**PFOS, PFOA, PFHxA, PFPeA, and PFBS were detected in the greatest number of surface waters** that were sampled by Waterkeeper groups. In addition to the high number of PFOA and PFOS detections, **other PFAS compounds were also detected with high frequency**. For example, PFHxA was detected in 153 samples (67.1% of all samples); PFPeA was detected in 126 samples (55.2% of all samples), and PFBS was detected in 118 samples (51.8% of all samples), see Table 3 and Figure 4. For the percentage of samples with PFAS detections in relation to the total number of samples taken in each State and D.C., see Appendix 7.

# TABLE 5 Top Six States With Highest Number of Total PFAS Detections

| State          | PFAS with Highest # of<br>Detections              | PFAS with Second<br>Highest # of Detections | Total # of PFAS<br>Detections |
|----------------|---------------------------------------------------|---------------------------------------------|-------------------------------|
| Maryland       | PFOA (17)<br>PFHxA (17)                           | PFOS (14)                                   | 134                           |
| Georgia        | PFOA (18)                                         | PFOS (17)                                   | 127                           |
| Florida        | PFOS (14)<br>PFOA (14)<br>PFHxA (14)<br>PFBS (14) | PFPeA (13)<br>PFHpA (13)                    | 119                           |
| North Carolina | PFOA (16)<br>PFOS (16)                            | PFHxA (14)                                  | 111                           |
| California     | PFBS (12)                                         | PFPeA (11)<br>PFOA (11)<br>PFHxA (11)       | 103                           |
| Alabama        | PFOS (15)                                         | PFOA (13)                                   | 96                            |



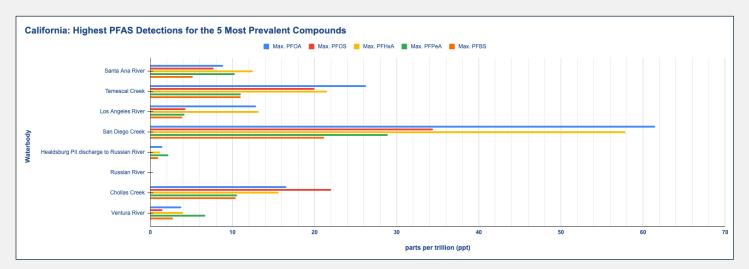
### **FIGURE 4**


Total Number of PFAS Detections by Compound

Several states had multiple surface waters that were contaminated with these five most prevalent PFAS at significant levels, see, e.g., Maryland, Alabama, California, and Georgia in Figures 5-8.

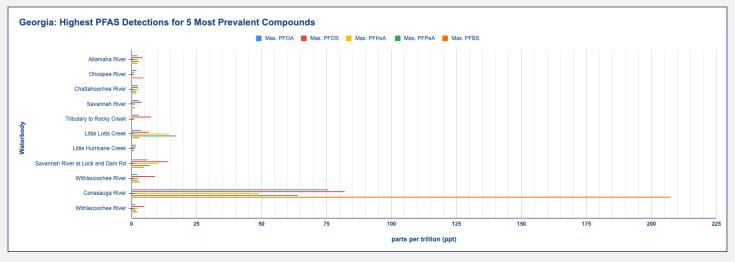


### FIGURE 5


Maryland Detections for Most Prevalent PFAS Compounds



#### **FIGURE 6**


Alabama: Detections for Most Prevalent PFAS Compounds

Nineteen of the 114 waterways sampled had no detection of PFAS compounds above the method detection limit (17%). Most of these non-detect waterways are rural and relatively undeveloped. It is notable that the laboratory detection level for PFOA and PFOS in this study is significantly higher than EPA's recently-published interim <u>Drinking Water Health Advisory Limits</u><sup>28</sup> for those substances (0.004 ppt and 0.02 ppt, respectively). **It is thus possible that waterways with non-detect results are in fact contaminated with these PFAS compounds at levels below the detection limits but above EPA's interim Health Advisory Limits.** 



#### **FIGURE 7**

California: Detections for Most Prevalent PFAS Compounds



#### FIGURE 8

Georgia: Detections for Most Prevalent PFAS Compounds

### **II. Individual PFAS Detections Within Three Defined Groupings**

This section is organized around Cyclopure's categorization of PFAS into three groups based on the number of analytes measured or the number of analytes with available guidance: EPA PFAS 4; States PFAS 11, and EPA 1633 (Draft) PFAS 40.

**A. EPA PFAS 4 Group.**<sup>29</sup> This group is composed of the four PFAS (PFOA, PFOS, PFBS, and GenX) that were the subject of EPA's June 15, 2022 <u>health advisory update</u>.<sup>30</sup> EPA's advisory update established the following Health Advisory Levels for each of the four PFAS compounds:

- Interim updated Health Advisory Level for PFOA = 0.004 parts per trillion (ppt). No state has a proposed PFOA standard or advisory less than 0.004 ppt.
- 2. Interim updated Health Advisory for PFOS = 0.02 ppt. No state has a proposed PFOS standard or advisory less than 0.02 ppt.
- 3. Final Health Advisory for GenX chemicals = 10.0 ppt.
- 4. Final Health Advisory for PFBS = 2,000 ppt.

PFOA and PFOS, which are highly persistent in the environment, were the most frequently detected PFAS across the 114 sampled waterways (roughly 70% of 228 total samples). For example:

- 1. PFOA was detected in 158 out of 228 sampling sites (a 69% detection frequency), with measured concentrations ranging from <1.0 to 847 ppt. The Interim Health Advisory Limit is 0.004 ppt.
- 2. PFOS was detected in 159 sampling sites (a 70% detection frequency), with measured concentrations ranging from <1.0 to 1364.7 ppt. The Interim Health Advisory Limit is 0.02 ppt.
- 3. PFBS was detected in 118 out of 228 sampling sites (a 52% detection frequency), with measured concentrations ranging from <1.0 to 2,083.3 ppt. The Final Health Advisory Limit is 2000 ppt.
- GenX was detected in four samples from three waterways, the Saluda River (South Carolina), Cape Fear River (North Carolina), and Tar Creek (Oklahoma). The highest concentration (25.8 ppt)

was measured in the Cape Fear River downstream sample. The Final Health Advisory Limit is 10 ppt.

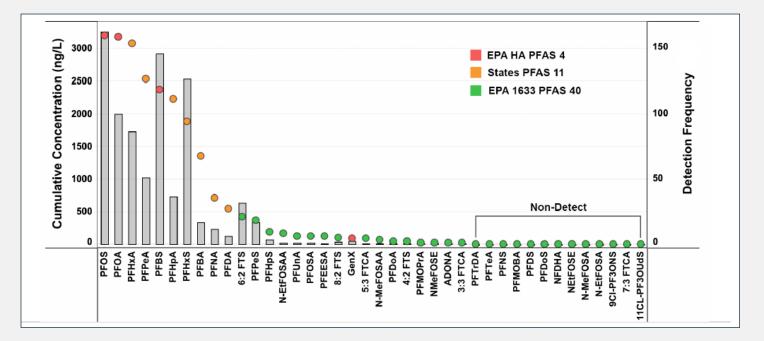
**B. EPA State PFAS 11 Group.**<sup>31</sup> This group is composed of the EPA PFAS 4 Group plus seven selected PFAS compounds for which the states have promulgated, proposed, or finalized standards or advisories, including specifically PFHxA, PFHxS, PFNA, PFDA, PFHpA, PFPeA, and PFBA.

For example, the Michigan Department of Environment, Great Lakes, and Energy established Maximum Contaminant Levels (MCLs) for a total of seven PFAS: PFOA, PFOS, PFHxA, PFNA, PFBS, PFHxS, and GenX (HFPO-DA). The Massachusetts Department of Environmental Protection published a cumulative MCL of 20 ppt for a group of six PFAS: PFOA, PFOS, PFHpA, PFNA, PFDA, and PFHxS. Additional information about current and proposed state limits for drinking water and surface water is available in the PFAS Water and Soil Values Table from the Interstate Technology and Regulatory Council (ITRC).<sup>32</sup>

EPA has also <u>announced plans</u><sup>33</sup> for developing toxicity assessments for PFBA, PFHxA, PFHxS, PFNA, and PFDA that, once complete, can be applied to determine health advisory levels for each of these PFAS.

As shown in Table 6, all seven of the PFAS compounds selected based on state regulatory activity were detected in surface waters during this sampling project.

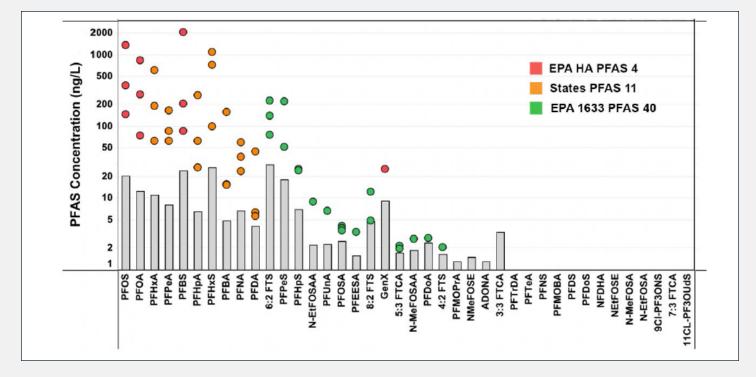
# TABLE 6 Detections and Maximum Concentrations for Seven of the EPA State PFAS 11 Group PFAS


| PFAS Compound | Number of Sites | Percent of Sites (%) | Maximum (ppt) |
|---------------|-----------------|----------------------|---------------|
| PFHxA         | 153             | 67                   | 607.1         |
| PFPeA         | 126             | 55                   | 166.5         |
| PFHpA         | 111             | 49                   | 272.8         |
| PFHxS         | 94              | 41                   | 1,093.3       |
| PFBA          | 67              | 29                   | 159.4         |
| PFNA          | 35              | 15                   | 60.3          |
| PFDA          | 27              | 12                   | 45.4          |

PFHxA was detected at 153 out of 228 sampling sites (a 67% detection frequency), with measured concentrations ranging from <1.0 to 607.1 ppt. This is similar to the concentration level and detection rate for PFOA. PFPeA, PFHpA, and PFHxS also had high detection frequencies and had high maximum concentration levels.

Among these seven compounds, six are carboxylic acids (PFBA, PFPeA, PFHxA, PFHpA, PFNA, and PFDA) having the same head group as PFOA in chain lengths varying from 3 to 9 fluorinated carbons; and one is a sulfonic acid (PFHxS) having the same head group as PFOS with a chain length of 6 fluorinated carbons. This data indicates a need for additional regulatory activity to address these particular PFAS compounds.

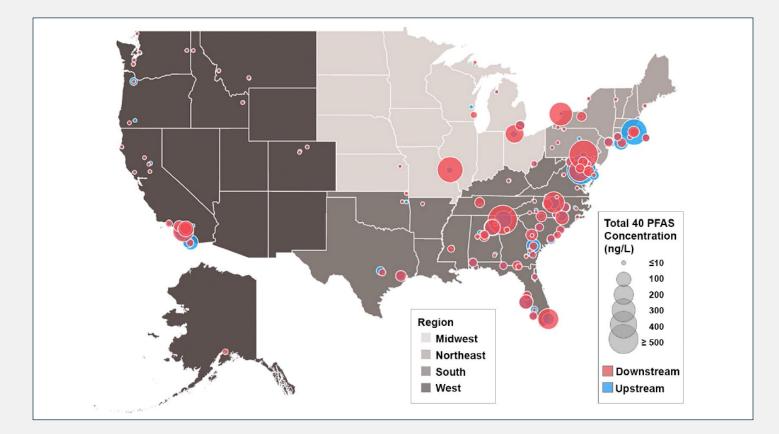
**C. EPA 1633 PFAS 40 Group.**<sup>35</sup> This group is composed of all the PFAS in the EPA State PFAS 11 Group plus twenty-nine additional PFAS analytes encompassed within EPA's June 2022 Draft Method 1633. None of the PFAS compounds encompassed with the EPA 1633 PFAS 40 Group are regulated by any federal water quality limit or standard. State standards are also lacking, as demonstrated by the limited number of standards shown in the PFAS Water and Soil Values Table from the Interstate Technology and Regulatory Council (ITRC).<sup>36</sup>


Within this group, approximately 68% of the PFAS compounds (27 out of 40) were detected at least once across the sampled waterways, and ten of the PFAS compounds measured had greater than 10% detection frequency. FBSA, in particular, was detected at 31 sites (14% detection frequency) and the highest concentration detected was 99.8 ppt. Thirteen of the PFAS compounds within this group were not detected above the Method Detection Limit. See Figure 9.



### FIGURE 9

Summary of detection frequency (circles) and cumulative concentration (ng/L; bars) of PFAS measured in surface water samples for PFAS in the three groups.<sup>34</sup>


As illustrated in Figure 10, this sampling project detected the majority of all PFAS compounds within the three groups in surface water samples across the country, often at high concentrations. None of these PFAS are governed by federal standards or criteria adequate to protect public health or the nation's surface waters as evidenced by the number of detections and the presence of these dangerous chemicals in waters that we tested across the country.



#### **FIGURE 10**

Distribution of PFAS concentrations by compound within the three groups. The gray bar represents the average concentration of each PFAS for all detections. Circles show the three highest concentrations for each PFAS.<sup>37</sup>

#### **III. Geospatial Distribution of PFAS Contamination**



#### **FIGURE 11**

Total PFAS concentrations (EPA PFAS 40) in each watershed for Upstream site (blue circles) and for Downstream site (red circles). Circle sizes correlate to measured PFAS concentrations at a sampling location. See legend. The base map is colored by four U.S. regions.<sup>38</sup>

#### MIDWEST<sup>39</sup>

#### 16 sampling sites from a total of 5 states

Among these states, the most elevated PFAS concentrations in this region were measured at sites in Missouri (Missouri Confluence Waterkeeper, PFOS (125.5 ppt)) and Ohio (Lake Erie Waterkeeper, PFOS (98.3 ppt)). In this region, the highest total PFAS concentration for all detections in a sample was 417.8 ppt, found in the downstream sample collected by Missouri Confluence Waterkeeper from Coldwater Creek, which flows into the Missouri River. Numerous PFAS compounds were detected in the downstream Coldwater Creek sample, see Table 7.



MISSOURI CONFLUENCE WATERKEEPER

| <b>Missouri Confluence Waterkeeper</b><br>Coldwater Creek Downstream<br>PFAS Sample (ppt) |       |  |
|-------------------------------------------------------------------------------------------|-------|--|
| PFOS                                                                                      | 125.5 |  |
| PFHxS                                                                                     | 101.1 |  |
| 6:2 FTS                                                                                   | 40.7  |  |
| PFHxA                                                                                     | 24.7  |  |
| PFPeA                                                                                     | 18.3  |  |
| PFOA                                                                                      | 17.0  |  |
| FHxSA                                                                                     | 16.6  |  |
| PFHpA                                                                                     | 13.2  |  |
| PFECHS                                                                                    | 12.7  |  |
| PFBS                                                                                      | 11.6  |  |
| PFPeS                                                                                     | 11.5  |  |
| FBSA                                                                                      | 7.1   |  |
| 8.2 FTS                                                                                   | 4.9   |  |
| PFBA                                                                                      | 3.0   |  |
| PFHpS                                                                                     | 2.8   |  |
| PFNA                                                                                      | 2.7   |  |
| PFDA                                                                                      | 1.8   |  |
| PFPrS                                                                                     | 1.5   |  |
| PFEESA                                                                                    | 1.1   |  |

#### NORTHEAST<sup>40</sup>

#### 34 sampling sites from a total of 8 states

Sites in Pennsylvania (Lower Susquehanna Riverkeeper, PFBS 2,083.3 ppt), Rhode Island (Narragansett Baykeeper, 6:2 FTS 76.4 ppt), and New York (Buffalo Niagara Waterkeeper, PFOS, 147.7 ppt) had the most elevated PFAS concentrations in this region. In this region, the highest total PFAS concentration for all detections in a sample (6,510.3 ppt) was found in the downstream sample collected by Lower Susquehanna Riverkeeper from Kreutz Creek in Pennsylvania. Numerous PFAS compounds were detected in the downstream Kreutz Creek sample, see Table 8.



**BUFFALO NIAGARA WATERKEEPER** 

| <b>Lower Susquehanna Riverkeeper</b><br>Kreutz Creek Downstream PFAS<br>Sample (ppt) |          |  |
|--------------------------------------------------------------------------------------|----------|--|
| PFBS                                                                                 | 2,083.30 |  |
| PFHxS                                                                                | 1,093.30 |  |
| PFOA                                                                                 | 847      |  |
| PFHxA                                                                                | 607.1    |  |
| PFOS                                                                                 | 374.3    |  |
| PFHpA                                                                                | 272.8    |  |
| 6:2 FTS                                                                              | 231.6    |  |
| PFPeS                                                                                | 223.4    |  |
| PFPeA                                                                                | 166.5    |  |
| PFBA                                                                                 | 159.4    |  |
| FBSA                                                                                 | 99.8     |  |
| FHxSA                                                                                | 91.8     |  |
| PFPrs                                                                                | 72.1     |  |
| PFDA                                                                                 | 45.4     |  |
| PFNA                                                                                 | 37.7     |  |
| PFECHS                                                                               | 32.4     |  |
| PFHpS                                                                                | 25.6     |  |
| MeFBSA                                                                               | 14.7     |  |
| N-EtFOSAA                                                                            | 9        |  |
| N-AP-FHxSA                                                                           | 5.9      |  |
| PFOSA                                                                                | 4.1      |  |
| 3:3 FTCA                                                                             | 3.4      |  |
| 8.2 FTS                                                                              | 2.6      |  |
| 4:2 FTS                                                                              | 2.1      |  |
| 5:3 FTCA                                                                             | 2        |  |
| FOSAA                                                                                | 1.7      |  |
| PFEESA                                                                               | 1.3      |  |

#### SOUTH<sup>41</sup>

#### 126 sampling sites from a total of 14 states and D.C.

Sites in Maryland, Georgia, Florida, West Virginia, and North Carolina had the most elevated PFAS concentrations in this region. The highest total PFAS concentration for each detection in a sample (3,192.3 ppt) was found in the upstream sample collected by Potomac Riverkeeper from Piscataway Creek in Maryland. Numerous PFAS compounds were detected in the upstream Piscataway Creek sample, see Table 9.



UPPER POTOMAC RIVERKEEPER

| <b>Potomac Riverkeeper</b><br>Piscataway Creek Upstream<br>PFAS Sample (ppt) |          |  |
|------------------------------------------------------------------------------|----------|--|
| PFOS                                                                         | 1,364.70 |  |
| PFHxS                                                                        | 726      |  |
| PFOA                                                                         | 282.8    |  |
| PFHxA                                                                        | 194.6    |  |
| 6:2 FTS                                                                      | 142.7    |  |
| FHxSA                                                                        | 99.1     |  |
| PFPeA                                                                        | 86.2     |  |
| PFHpA                                                                        | 63.1     |  |
| PFPeS                                                                        | 52.8     |  |
| PFBS                                                                         | 48.2     |  |
| FBSA                                                                         | 28       |  |
| PFHpS                                                                        | 24.2     |  |
| PFNA                                                                         | 24       |  |
| PFBA                                                                         | 15.8     |  |
| 8.2 FTS                                                                      | 12.4     |  |
| PFPrS                                                                        | 7.7      |  |
| PFECHS                                                                       | 7.4      |  |
| PFDA                                                                         | 5.2      |  |
| PFOSA                                                                        | 3.8      |  |
| 4:2 FTS                                                                      | 1.2      |  |
| 5:3 FTCA                                                                     | 1.2      |  |
| PFUnA                                                                        | 1.2      |  |

#### WEST<sup>42</sup>

#### 50 sampling sites from a total of 7 states

The highest PFAS concentrations in this region were detected in Southern California (e.g., Orange County, San Diego, and Los Angeles). In this region, the highest total PFAS concentration for each detection in a sample, (227.9 ppt), was found in the downstream sample collected by Orange County Coastkeeper from San Diego Creek in California. Numerous PFAS compounds were detected in the downstream San Diego Creek sample, see Table 10.

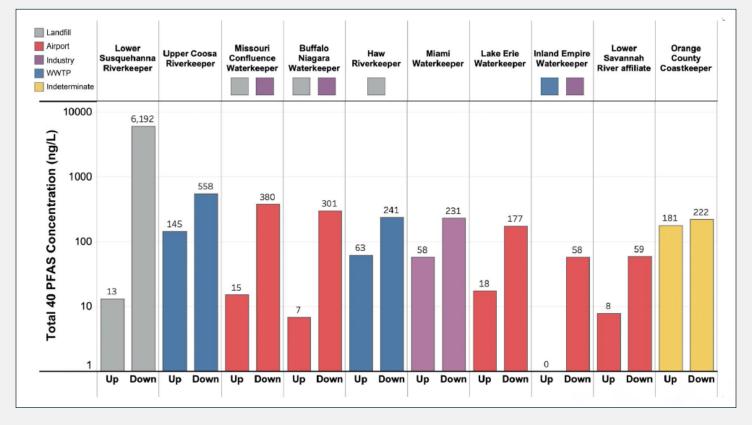


HUMBOLDT BAYKEEPER

| <b>Orange County Coastkeeper</b><br>San Diego Creek Downstream<br>PFAS Sample (ppt) |      |  |
|-------------------------------------------------------------------------------------|------|--|
| PFOA                                                                                | 61.5 |  |
| PFHxS                                                                               | 52.4 |  |
| PFOS                                                                                | 34.4 |  |
| PFHxA                                                                               | 23.7 |  |
| PFBS                                                                                | 12.7 |  |
| PFPeA                                                                               | 12.2 |  |
| PFHpA                                                                               | 10.2 |  |
| PFPeS                                                                               | 5.4  |  |
| FBSA                                                                                | 3.2  |  |
| PFBA                                                                                | 2.9  |  |
| FHxSA                                                                               | 2.4  |  |
| PFNA                                                                                | 2.4  |  |
| PFDA                                                                                | 2.2  |  |
| PFHpS                                                                               | 1.3  |  |
| 6:2 FTS                                                                             | 1    |  |

Data from the eight regional sites with the highest total PFAS 40 Levels (Table 11) reveals some similarities in the frequency of PFAS detections, regardless of region. For example, PFOA, PFOS, and PFBS were detected and measured in the sample for each of the eight regional sites. For six of the regional sites, the highest PFAS concentration came from the EPA PFAS 4 group.

This data shows that PFAS, like PFOA, PFOS, and PFBS, are still the prevalent PFAS in waterways across the country due, in part, to high environmental persistence and their continuing presence in landfills and other areas. Other PFAS compounds are also prevalent and often found at concentrations higher than the concentrations of PFOA, PFOS, and PFBS in the same sample. This data confirms the need for further federal PFAS regulatory activity for all PFAS.


#### TABLE 11

### Waterkeeper Groups With Highest Total EPA 1633 PFAS 40 Group Concentration Measurements in Each Region<sup>43 44</sup>

| Region    | Waterkeeper                        | Regional<br>Rank | State        | Upstream /<br>Downstream | Total 40 PFAS<br>Concentration<br>(ng/L or ppt) |
|-----------|------------------------------------|------------------|--------------|--------------------------|-------------------------------------------------|
| Midwest   | Missouri Confluence<br>Waterkeeper | Top 1            | Missouri     | Downstream               | 380                                             |
| Midwest   | Lake Erie Waterkeeper              | Top 2            | Ohio         | Downstream               | 177                                             |
| Northeast | Lower Susquehanna Riverkeeper      | Top 1            | Pennsylvania | Downstream               | 6192                                            |
| Northeast | Narragansett Baykeeper             | Top 2            | Rhode Island | Upstream                 | 385                                             |
| South     | Potmac Riverkeeper                 | Top 1            | Maryland     | Upstream                 | 3050                                            |
| South     | Upper Coosa Riverkeeper            | Top 2            | Georgia      | Downstream               | 558                                             |
| West      | Orange County Coastkeeper          | Top 1            | California   | Downstream               | 222                                             |
| West      | Orange County Coastkeeper          | Тор 2            | California   | Upstream                 | 181                                             |

#### **IV. SOURCE ANALYSIS AND IDENTIFICATION FOR TEN WATERWAYS**

Ten case study waterways were selected for having the greatest difference between total upstream and downstream PFAS concentrations.<sup>45</sup> See Figure 12 for total EPA 1633 PFAS 40 Group PFAS concentrations for each of the 10 case study waterways. Each of these waterways was then classified based on the four primary potential contamination sources: landfills, airports, industrial sites, and wastewater treatment plants.



#### **FIGURE 12**

Ten Case Study Waterways. PFAS potential point contamination sources: landfill in gray, airport in red, industry in purple, WWTP in blue, and indeterminate in yellow. Bar colors indicate the primary suspect sources for each waterway. Colored boxes depicted above the bar, indicate secondary suspect sources. Up denotes upstream and down denotes downstream.<sup>46</sup>

#### Landfills<sup>47</sup>

PFAS are incorporated into many consumer and commercial products that are ultimately disposed of in landfills. This results in PFAS leaching into water as it flows through landfills creating leachate, which in turn seeps from landfills into ground and surface waters.

The waterway with the highest total EPA PFAS 40 concentration change between upstream and downstream was sampled by Lower Susquehanna Riverkeeper at Kreutz Creek in PA. For this location, a landfill site was identified as the major potential source for PFAS contamination.

Only one-half mile apart, the upstream and downstream samples had total EPA PFAS 40 detections of 13.4 ppt and 6,191.9 ppt, respectively. In the downstream sample, 20 PFAS were detected with dominant species concentrations of 2,083.3 ppt for PFBS, 1,093.3 ppt for PFHxS, 847.0 ppt for PFOA, 607.1 ppt for PFHxA, 374.3 ppt for PFOS, and 272.8 ppt for PFHpA.

Landfills were also identified as potential PFAS contamination sources in the sampling locations for Missouri Confluence Waterkeeper, Buffalo Niagara Waterkeeper, and Haw Riverkeeper.

#### Airports<sup>48</sup>

PFAS, such as PFOS, have historically been, and continue to be, incorporated into firefighting foams which are used for firefighting training and emergency fire suppression at commercial airports, military bases, and small airstrips. Once these compounds are sprayed on the ground they become extremely susceptible to running off with stormwater or snowmelt into surface waters or seeping into the ground to contaminate soils and groundwater aquifers.

Five case study locations were found to have at least one airport as a potential primary or secondary PFAS contamination source. The identified airports include:

- St. Louis Lambert International Airport (Missouri Confluence Waterkeeper)
- Niagara Falls International Airport (Buffalo Niagara Waterkeeper)
- Eugene F. Kranz Toledo Express Airport (Lake Erie Waterkeeper)
- SBD International Airport and Flabob Airport (Inland Empire Waterkeeper)
- Augusta Regional Airport (Savannah Riverkeeper and affiliate)

The waterways sampled by Missouri Confluence Waterkeeper (Coldwater Creek) and Buffalo Niagara Waterkeeper (Cayuga Creek) flow directly through the subject airports and show larger PFAS concentration variation between upstream and downstream sites than sampling locations associated with Lake Erie, Inland Empire, and Lower Savannah River.

#### Industrial Sites<sup>49</sup>

PFAS compounds are used to produce and/or are incorporated into myriad industrial and common consumer products, including non-stick cooking pans, food packaging, and waterand stain-resistant clothing.<sup>50</sup> The discharge of solid and liquid waste generated during these industrial activities is a source of PFAS contamination of soil and water systems. Industrial sites were identified as the potential primary or secondary source of PFAS contamination for four of the 10 case study waterways: Miami Waterkeeper, Missouri Confluence Waterkeeper, Buffalo Niagara Waterkeeper, and Inland Empire Waterkeeper.

- For Miami Waterkeeper, the Eastview Commerce Center, located between upstream and downstream sampling sites, contains numerous industrial activities, including furniture manufacturing.
- For Missouri Confluence Waterkeeper, two categories of industry were identified: (i) consumer products manufacturers, such as plastic fabrication, janitorial supplies, home improvement products, and packaging materials; and (ii) aerospace industry and high precision machining.
- For Buffalo Niagara Waterkeeper, identified manufacturers included the aerospace and sensor industries.
- For Inland Empire Waterkeeper, numerous industries are located between upstream and downstream sampling sites over a distance of 50 miles, including artificial turf, plumbing supplies, battery testers, and control panels.

#### Wastewater Treatment Plants<sup>51</sup>

Industrial discharges of PFAS-laden wastewater into publicly owned treatment works is a primary source of PFAS in sewage treatment plant effluents, and studies have shown that PFAS are present at every stage of the wastewater treatment process (i.e., raw wastewater, treated wastewater, sewage sludge, and suspended solids).

Among the 10 case study waterways, three have WWTPs as the potential primary or secondary source of PFAS contamination, including:

- Upper Coosa Riverkeeper (Dalton Utilities Wastewater Treatment Facilities)
- Haw Riverkeeper (TZ Osborne WWTP)
- Inland Empire Waterkeeper (Western Riverside County Regional Wastewater Authority, Riverside WWTP, Colton WWTP, San Bernardino Water Reclamation, Redlands Wastewater Treatment)

#### Indeterminate PFAS Source<sup>52</sup>

For Orange County Coastkeeper, the upstream and downstream sites are located in a highly populated residential area. Due to divergent community activities, a potential source of PFAS contamination was not identifiable.

# Cyclopure Water Test Kit Pro with DEXSORB+ for PFAS

## RECOMMENDATIONS

**Even with the clear danger and prevalence of PFAS in waters across the United States**, broad-based action to address contamination (e.g., prohibitions on manufacture and sale of PFAS compounds; comprehensive water testing; regulatory oversight and enforcement at the source; investment in research and technologies; and implementation of treatment applications) has been slow and inadequate to date. For example:

- There are currently no federal limits on PFAS releases into surface waters under the Clean Water Act, putting the health and safety of communities across the nation at risk and resulting in costly cleanup and treatment activities to remove PFAS contamination after it has occurred.
- According to a recent map published by the EWG,<sup>53</sup> PFAS contamination has been detected at more than 2,800 sites in 50 states. These include military sites that use firefighting foam containing PFAS and industrial sites where PFAS chemicals were manufactured or used in production. Experts estimate that nearly 30,000 facilities<sup>54</sup> discharge PFAS to surface water (or to wastewater treatment plants which then discharge their effluent to surface water).
- By the end of 2023, <u>EPA expects to set drinking water standards for PFOA</u> <u>and PFOS</u><sup>55</sup> that will require drinking water utilities to undertake expensive upgrades to their systems, even as PFAS manufacturers and users continue to operate with impunity because of the lack of federal limits on sale and use of these chemicals. The cost of mitigating this contamination should not fall solely on utilities and, by extension, everyday people who pay their rates to water utilities for clean water.
- Under the <u>PFAS Strategic Road Map<sup>56</sup></u> developed by EPA, it could be many years before federal limits are in place for PFAS discharges from pollution sources, and the plan only includes deadlines for proposing rules governing discharges from a few sources – chemical manufacturing, electroplating, and metal finishing.

### Congress and EPA can address these challenges with the urgency they require by prioritizing:

- 1. Passing Clean Water Act legislation
- 2. Adopting regulatory standards and designations
- 3. Funding and implementing more strategic and coordinated water monitoring in surface waters, groundwater, and drinking water supplies
- 4. Developing improved analytical methods
- 5. Prioritizing implementation and enforcement of clean water and cleanup laws

#### Clean Water Standards for PFAS Act<sup>57</sup>

The Clean Water Standards for PFAS Act would help reduce levels of PFAS contamination from entering water sources in the first place. The bill requires EPA to set new standards under the Clean Water Act for at least nine industry categories that are known to discharge PFAS into the environment. These standards would restrict the flow of PFAS chemicals into surface waters and to public treatment works. Specifically, the Clean Water Standards for PFAS Act would:

- Require EPA to review the sources of PFAS in waterbodies and use that information to set protective limits on the amount of PFAS chemicals that can be released.
- Require EPA to establish water quality criteria for each measurable PFAS and class of PFAS within three years. <u>Water quality criteria</u><sup>58</sup> are numerical criteria developed by EPA for determining, e.g., when water becomes unsafe to human health. EPA has previously developed water quality criteria for <u>many</u> <u>pollutants</u>,<sup>59</sup> but not for PFAS.
- Set enforceable deadlines for EPA to develop effluent limitations, including industrial pretreatment standards, for measurable PFAS and classes of PFAS.
  - <u>Effluent limitation guidelines</u><sup>60</sup> are national standards for wastewater discharged to surface waters and publicly owned wastewater treatment plants. EPA issues these regulations for certain <u>industrial categories</u>,<sup>61</sup> based on the performance of treatment and control technologies. These technology-based standards are intended to represent the greatest pollution reductions that are economically achievable by industry.
  - <u>Pretreatment standards</u><sup>62</sup> are a type of effluent limitation. Pretreatment standards are discharge limits developed by EPA that apply to certain manufacturers who send wastewater to a wastewater treatment plant.

Pretreatment standards and requirements can be expressed as numeric limits, narrative prohibitions, and best management practices.

EPA would be required to establish effluent limitations and pretreatment standards for discharges to surface water or to publicly owned treatment works from nine different sources on the following schedule:

- Chemical manufacturing and formulating, electroplating, and metal finishing by June 30, 2024;
- Landfills, textile mills, and electronics manufacturing by June 30, 2025;
- Plastics molding, leather tanning, and paint formulating by December 31, 2026.
- The bill also imposes monitoring requirements for paper mills and airports. EPA must determine whether to establish discharge limits for those sources by December 31, 2023, and complete those limits by December 31, 2027.

Provide appropriations for EPA to complete this work.

#### Drinking Water Limits<sup>63</sup>

According to its <u>PFAS Strategic Roadmap</u>,<sup>64</sup> EPA plans to establish "a national primary drinking water regulation for PFOA and PFOS that would set enforceable limits and require monitoring of public water supplies, while evaluating additional PFAS and groups of PFAS. (<u>Science Advisory Board consultation ongoing</u>;<sup>65</sup> proposed rule fall 2022, final rule fall 2023)." EPA must follow through on these proposals, issue the notices in the fall of 2022, and act urgently to finalize this drinking water regulation.

#### **CERCLA Hazardous Substance Designation**<sup>66</sup>

As EPA proposed in its <u>PFAS Strategic Roadmap<sup>67</sup></u> on August 26, 2022, the agency <u>announced<sup>68</sup></u> that it was proposing to designate PFOA and PFOS as CERCLA hazardous substances to "increase transparency around releases of these harmful chemicals and help to hold polluters accountable for cleaning up their contamination." At the same time, EPA also announced its future plan to issue "an Advance Notice of Proposed Rulemaking...to seek public comment on designating other PFAS chemicals as CERCLA hazardous substances."<sup>69</sup> EPA must now follow through as expeditiously as possible on each of these proposals, and act urgently to finalize these designations including designating the entire class of PFAS given that mixtures of multiple PFAS compounds were found in the majority of surface water samples.

#### RCRA Hazardous Waste Designation<sup>70</sup>

According to the <u>PFAS Strategic Roadmap</u>,<sup>71</sup> EPA intends to initiate "two rulemakings under the Resource Conservation and Recovery Act to address PFAS" (initiated October 2021). According to EPA:

- "First, the agency will initiate the process to propose adding four PFAS chemicals as RCRA Hazardous Constituents under Appendix VIII, by evaluating the existing data for these chemicals and establishing a record to support such a proposed rule. The four PFAS chemicals EPA will evaluate are: perfluorooctanoic acid (PFOA), perfluorooctane sulfonic acid (PFOS), perfluorobutane sulfonic acid (PFBS), and GenX. Adding these chemicals as RCRA Hazardous Constituents would ensure they are subject to corrective action requirements and would be a necessary building block for future work to regulate PFAS as a listed hazardous waste." The agency's current regulatory agenda<sup>72</sup> indicates this may be proposed in August 2023.
- "The second rulemaking effort will clarify in EPA regulations that the RCRA Corrective Action Program has the authority to require investigation and cleanup for wastes that meet the statutory definition of hazardous waste, as defined under RCRA section 1004(5). This modification would clarify that emerging contaminants such as PFAS can be cleaned up through the RCRA corrective action process." The agency's current <u>regulatory agenda<sup>73</sup></u> indicates this may be proposed in January 2023.

EPA must now follow through on these proposals, issue the notices as proposed, and act urgently to finalize the listing and clarifying rule.

#### Water Quality Criteria for Surface Waters74

According to the <u>PFAS Strategic Roadmap</u>,<sup>75</sup> EPA will publish "final recommended ambient water quality criteria for PFAS for aquatic life and human health to help Tribes and states develop standards, write permits, and assess cumulative impacts (expected winter 2022 and fall 2024)." EPA must follow through on the adoption of water quality criteria and act urgently on protective criteria as soon as possible, and no later than the fall of 2024.

#### Monitoring<sup>76</sup>

The Bipartisan Infrastructure Law provides <u>\$10 billion in funding</u><sup>77</sup> to address PFAS contamination over five years. EPA should leverage this funding and implement a coordinated water monitoring program for <u>PFAS</u> with federal, state, and interstate agencies. EPA should include the PFAS contaminants in its National Aquatic Resource Surveys of rivers/streams, lakes, coastal waters, and wetlands and U.S. Geological Survey should include these contaminants in their National Water Quality Assessment Program and in their special studies for states.

## APPENDICES

steno bo

## APPENDIX 1 Participating Waterkeeper Groups

| Waterkeeper Group                                                                | Name                 | State                |
|----------------------------------------------------------------------------------|----------------------|----------------------|
| Black Warrior Riverkeeper                                                        | Nelson Brooke        | Alabama              |
| Cahaba Riverkeeper                                                               | David Butler         | Alabama              |
| Choctawhatchee Riverkeeper                                                       | Michael Mullen       | Alabama              |
| Coosa Riverkeeper                                                                | Justinn Overton      | Alabama              |
| Hurricane Creekkeeper                                                            | John Wathen          | Alabama              |
| Little River Waterkeeper                                                         | Bill Shugart         | Alabama              |
| Mobile Baykeeper                                                                 | Cade Kistler         | Alabama              |
| Waterkeepers Alabama                                                             | Justinn Overton      | Alabama              |
| Cook Inletkeeper                                                                 | Sue Mauger           | Alaska               |
| Arkansas Ozark Waterkeeper                                                       | Teresa Turk          | Arkansas             |
| CA Urban Streams Alliance - The Stream<br>Team, a Waterkeeper Alliance Affiliate | Timmarie Hamill      | California           |
| California Coastkeeper Alliance                                                  | Sean Bothwell        | California           |
| Humboldt Baykeeper                                                               | Jennifer Kalt        | California           |
| Inland Empire Waterkeeper                                                        | Garry Brown          | California           |
| Los Angeles Waterkeeper                                                          | Bruce Reznik         | California           |
| Orange County Coastkeeper                                                        | Garry Brown          | California           |
| Russian Riverkeeper                                                              | Don McEnhilll        | California           |
| San Diego Coastkeeper                                                            | Phillip Musegaas     | California           |
| Santa Barbara Channelkeeper                                                      | Benjamin Pitterle    | California           |
| Yuba River Waterkeeper                                                           | Aaron Zettler - Mann | California           |
| Poudre Waterkeeper                                                               | Gary Wockner         | Colorado             |
| Upper Colorado River Watershed Group,<br>a Waterkeeper Alliance Affiliate        | Andy Miller          | Colorado             |
| Long Island Soundkeeper                                                          | William Lucey        | Connecticut          |
| Anacostia Riverkeeper                                                            | Trey Sherard         | District of Columbia |
| Apalachicola Riverkeeper                                                         | Georgia Ackerman     | Florida              |
| Calusa Waterkeeper                                                               | John Cassani         | Florida              |
| Collier County Warerkeeper                                                       | KC Schulberg         | Florida              |
| Miami Waterkeeper                                                                | Rachel Silverstein   | Florida              |
| St. Johns Riverkeeper                                                            | Lisa Rinaman         | Florida              |
| Suncoast Waterkeeper                                                             | Abbey Tyrna          | Florida              |
| Suwannee Riverkeeper                                                             | John Quarterman      | Florida              |

| Waterkeeper Group                                                            | Name                     | State          |
|------------------------------------------------------------------------------|--------------------------|----------------|
| Tampa Bay Waterkeeper                                                        | Justin Tramble           | Florida        |
| Waterkeepers Florida                                                         | John Quarterman          | Florida        |
| Altamaha Coastkeeper                                                         | Maggie Van Cantfort      | Georgia        |
| Altamaha Riverkeeper                                                         | Fletcher Sams            | Georgia        |
| Chattahoochee Riverkeeper                                                    | Jason Ulseth             | Georgia        |
| Lower Savannah River Alliance, a<br>Waterkeeper Alliance Affiliate           | Tonya Bonitatibus        | Georgia        |
| Ogeechee Riverkeeeper                                                        | Damon Mullis             | Georgia        |
| Satilla Riverkeeper                                                          | Chris Bertrand           | Georgia        |
| Savannah Riverkeeper                                                         | Tonya Bonitatibus        | Georgia        |
| Upper Coosa Riverkeeper                                                      | Jesse Demonbreun-Chapman | Georgia        |
| Lake Coeur d'Alene Waterkeeper                                               | Shelley Austin           | Idaho          |
| Snake River Waterkeeper                                                      | Ferrell Ryan             | Idaho          |
| Kansas Riverkeeper                                                           | Dawn Buehler             | Kansas         |
| Kentucky Riverkeeper                                                         | Pat A Banks              | Kentucky       |
| Casco Baykeeper                                                              | Ivy L. Frignoca          | Maine          |
| Assateague Coastkeeper                                                       | Gabrielle Ross           | Maryland       |
| Baltimore Harbor Waterkeeper                                                 | Alice Volpitta           | Maryland       |
| Chester Riverkeeper                                                          | Annie Richards           | Maryland       |
| Choptank Riverkeeper                                                         | Matt Pluta               | Maryland       |
| Gunpowder Riverkeeper                                                        | Theaux Le Gardeur        | Maryland       |
| Miles-Wye Riverkeeper                                                        | Elle Bassett             | Maryland       |
| Potomac Riverkeeper                                                          | Dean Naujoks             | Maryland       |
| Sassafras Riverkeeper                                                        | Zack Kelleher            | Maryland       |
| Severn Riverkeeper                                                           | Sara Caldes              | Maryland       |
| South, West & Rhode Riverkeeper                                              | Evann Magee              | Maryland       |
| Nantucket Waterkeeper                                                        | RJ Turcotte              | Massachusetts  |
| Detroit Riverkeeper                                                          | Robert Burns             | Michigan       |
| Grand Traverse Baykeeper                                                     | Heather Smith            | Michigan       |
| Yellow Dog Riverkeeper                                                       | Chauncey Moran           | Michigan       |
| Pearl Riverkeeper                                                            | Abby Braman              | Mississippi    |
| Missouri Confluence Waterkeeper                                              | Rachel Bartels           | Missouri       |
| Bitterroot River Protection Association, a<br>Waterkeeper Alliance Affiliate | Michael Howell           | Montana        |
| Upper Missouri Waterkeeper                                                   | Guy Alsentzer            | Montana        |
| Hackensack Riverkeeper                                                       | Bill Sheehan             | New Jersey     |
| Buffalo Niagara Waterkeeper                                                  | Jill Jedlicka            | New York       |
| Chautauqua-Conewango Consortium, a<br>Waterkeeper Alliance Affiliate         | Jane Conroe              | New York       |
| Peconic Baykeeper                                                            | Peter Topping            | New York       |
| Seneca Lake Guardian, a Waterkeeper<br>Alliance Affiliate                    | Joseph Campbell          | New York       |
| Upper St. Lawrence Riverkeeper                                               | John Peach               | New York       |
| Broad Riverkeeper                                                            | David Caldwell           | North Carolina |
| Cape Fear Riverkeeper                                                        | Kemp Burdette            | North Carolina |

| Waterkeeper Group                                                    | Name                     | State          |
|----------------------------------------------------------------------|--------------------------|----------------|
| Catawba Riverkeeper                                                  | Brandon Jones            | North Carolina |
| Green Riverkeeper                                                    | Erica Shanks             | North Carolina |
| Haw Riverkeeper                                                      | Emily Sutton             | North Carolina |
| Lumber Riverkeeper                                                   | Jefferson Currie II      | North Carolina |
| Neuse Riverkeeper                                                    | Samantha Krop            | North Carolina |
| Pamlico-Tar Riverkeeper                                              | Jill Howell              | North Carolina |
| Watauga Riverkeeper                                                  | Andy Hill                | North Carolina |
| White Oak Waterkeeper                                                | Riley Lewis              | North Carolina |
| Yadkin Riverkeeper                                                   | Edgar Miller             | North Carolina |
| Lake Erie Waterkeeper                                                | Sandy Bihn               | Ohio           |
| Grand Riverkeeper                                                    | Martin Lively            | Oklahoma       |
| Spring Creek Coalition, a Waterkeeper<br>Alliance Affiliate          | Beth Rooney              | Oklahoma       |
| Tar Creekkeeper                                                      | Rebecca Jim              | Oklahoma       |
| Rogue Riverkeeper                                                    | Frances Oyung            | Oregon         |
| Tualatin Riverkeeper                                                 | Victoria Frankeny        | Oregon         |
| Lower Susquehanna Riverkeeper                                        | Ted Evgeniadis           | Pennsylvania   |
| Middle Susquehanna Riverkeeper                                       | John Zaktansky           | Pennsylvania   |
| Three Rivers Waterkeeper                                             | Heather Hulton VanTassel | Pennsylvania   |
| Upper Allegheny River Project, a<br>Waterkeeper Alliance Affiliate   | Pamela Digel             | Pennsylvania   |
| Narragansett Bay Riverkeeper                                         | Kate McPherson           | Rhode Island   |
| Narragansett Baykeeper                                               | Mike Jarbeau             | Rhode Island   |
| South County Coastkeeper                                             | David Prescott           | Rhode Island   |
| Black-Sampit Riverkeeper                                             | Erin Donmoyer            | South Carolina |
| Charleston Waterkeeper                                               | Andrew Wunderley         | South Carolina |
| Congaree Riverkeeper                                                 | Bill Stangler            | South Carolina |
| Waccamaw Riverkeeper                                                 | Cara Schildtknecht       | South Carolina |
| Tennessee Riverkeeper                                                | David Whiteside          | Tennessee      |
| Bayou City Waterkeeper                                               | Kristen Schlemmer        | Texas          |
| Environmental Stewardship, a<br>Waterkeeper Alliance Affiliate       | Steve Box                | Texas          |
| Lake Champlain Lakekeeper                                            | Julie Silverman          | Vermont        |
| Dan Riverkeeper                                                      | Steven Pullian           | Virginia       |
| James Riverkeeper                                                    | Erin Reilly              | Virginia       |
| Shenandoah Riverkeeper                                               | Mark Frondorf            | Virginia       |
| Deschutes Estuary Restoration Team, a<br>Puget Soundkeeper Affiliate | Paige Anderson           | Washington     |
| North Sound Baykeeper                                                | Eleanor Hines            | Washington     |
| Puget Soundkeeper                                                    | Sean Dixon               | Washington     |
| Spokane Riverkeeper                                                  | Jerry White Jr.          | Washington     |
| Twin Harbors Waterkeeper                                             | Lee First                | Washington     |
| Upper Potomac Riverkeeper                                            | Brent E Walls            | West Virginia  |
| West Virginia Headwaters Waterkeeper                                 | Angie Rosser             | West Virginia  |
| Milwaukee Riverkeeper                                                | Cheryl Nenn              | Wisconsin      |

#### APPENDIX 2 EPA Analytical Methods

EPA Method 533

EPA Method 53778

EPA Method 1633 (Draft)<sup>79</sup>

#### APPENDIX 3 PFAS Detected by Cyclopure Analytical Methods

| PFAS Detected<br>by Cyclopure<br>Using EPA<br>Methods 533,<br>537 and 1633<br>(Draft) | Compound Name                         | CAS#        | Method 1633 (Draft) |
|---------------------------------------------------------------------------------------|---------------------------------------|-------------|---------------------|
| PFBA                                                                                  | Perfluorobutanoic Acid                | 375-22-4    | Υ                   |
| PFPeA                                                                                 | Perfluoropentanoic Acid               | 2706-90-3   | Υ                   |
| PFHxA                                                                                 | Perfluorohexanoic Acid                | 307-24-4    | Υ                   |
| PFHpA                                                                                 | Perfluoroheptanoic Acid               | 375-85-9    | Υ                   |
| PFOA                                                                                  | Perfluorooctanoic Acid                | 335-67-1    | Υ                   |
| PFNA                                                                                  | Perfluorononanoic Acid                | 375-95-1    | Y                   |
| PFDA                                                                                  | Perfluorodecanoic Acid                | 335-76-2    | Υ                   |
| PFUnA                                                                                 | Perfluoroundecanoic Acid              | 2058-94-8   | Υ                   |
| PFDoA                                                                                 | Perfluorododecanoic Acid              | 307-55-1    | Υ                   |
| PFTrDA                                                                                | Perfluorotridecanoic Acid             | 72629-94-8  | Υ                   |
| PFTeA                                                                                 | Perfluorotetradecanoic Acid           | 0376-06-07  | Υ                   |
| PFPrS                                                                                 | Perfluoropropane Sulfonic Acid        | 423-41-6    |                     |
| PFBS                                                                                  | Perfluorobutane Sulfonic Acid         | 375-73-5    | Υ                   |
| PFPeS                                                                                 | Perfluoropentane Sulfonic Acid        | 2706-91-4   | Υ                   |
| PFHxS                                                                                 | Perfluorohexane Sulfonic Acid         | 355-46-4    | Υ                   |
| PFHpS                                                                                 | Perfluoroheptane Sulfonic Acid        | 375-92-8    | Υ                   |
| PFOS                                                                                  | Perfluorooctane Sulfonic Acid         | 1763-23-1   | Υ                   |
| PFNS                                                                                  | Perfluorononane Sulfonic Acid         | 474511-07-4 | Y                   |
| PFDS                                                                                  | Perfluorodecane Sulfonic Acid         | 335-77-3    | Υ                   |
| PFDoS                                                                                 | Perfluorododecane Sulfonic Acid       | 79780-39-5  | Υ                   |
| 4:2 FTS                                                                               | 4:2 Fluorotelomer Sulfonate           | 414911-30-1 | Υ                   |
| 6:2 FTS                                                                               | 6:2 Fluorotelomer Sulfonate           | 425670-75-3 | Υ                   |
| 8:2 FTS                                                                               | 8:2 Fluorotelomer Sulfonate           | 481071-78-7 | Υ                   |
| 10:2 FTS                                                                              | 10:2 Fluorotelomer Sulfonate          | 120226-60-0 |                     |
| FBSA                                                                                  | Perfluorobutane Sulfonamide           | 30334-69-1  |                     |
| MeFBSA                                                                                | N-Methylperfluorobutanesulfonamide    | 68298-12-4  |                     |
| FHxSA                                                                                 | Perfluorohexane Sulfonamide           | 41997-13-1  |                     |
| PFOSA                                                                                 | Perfluorooctane Sulfonamide           | 754-91-6    | Υ                   |
| FDSA                                                                                  | Perfluorodecane Sulfonamide           | N/A         |                     |
| NEtFOSA                                                                               | N-Ethylperfluorooctane-1-Sulfonamide  | 4151-50-2   | Y                   |
| NMeFOSA                                                                               | N-Methylperfluorooctane-1-Sulfonamide | 31506-32-8  | Υ                   |

| PFAS Detected<br>by Cyclopure<br>Using EPA<br>Methods 533,<br>537 and 1633<br>(Draft) | Compound Name                                                    | CAS#        | Method 1633 (Draft) |
|---------------------------------------------------------------------------------------|------------------------------------------------------------------|-------------|---------------------|
| FOSAA                                                                                 | Perfluorooctane Sulfonamido Acetic Acid                          | 2806-24-8   |                     |
| NEtFOSAA                                                                              | N-Ethyl Perfluorooctane Sulfonamido<br>Acetic Acid               | 2991-50-6   | Υ                   |
| NMeFOSAA                                                                              | N-Methyl Perfluorooctane Sulfonamido<br>Acetic Acid              | 2355-31-9   | Υ                   |
| NMeFOSE                                                                               | N-methyl<br>perfluorooctanesulfonamidoethanol                    | 24448-09-07 | Υ                   |
| NETFOSE                                                                               | N-ethyl<br>perfluorooctanesulfonamidoethanol                     | 1691-99-2   | Υ                   |
| HFPO-DA (GenX)                                                                        | Hexafluoropropylene Oxide Dimer Acid                             | 13252-13-6  | Υ                   |
| ADONA                                                                                 | 4,8-Dioxa-3H-Perfluorononanoate                                  | 919005-14-4 | Υ                   |
| PFMPA or PFMOPrA                                                                      | Perfluoro-3-Methoxypropanoic Acid                                | 377-73-1    | Υ                   |
| PFMBA                                                                                 | Perfluoro-4-Methoxybutanoic Acid                                 | 863090-89-5 | Υ                   |
| NFDHA                                                                                 | Perfluoro-3,6-Dioxaheptanoic Acid                                | 151772-58-6 | Υ                   |
| 9CI-PF3ONS                                                                            | 9-Chlorohexadecafluoro-3-Oxanone-1-<br>Sulfonic Acid             | 756426-58-1 | Υ                   |
| 11CL-PF3OUdS                                                                          | 11-Chloroeicosafluoro-3-Oxanonane-1-<br>Sulfonic Acid            | 763051-92-9 | Υ                   |
| PFEESA                                                                                | Perfluoro(2-ethoxyethane) Sulfonic acid                          | 113507-82-7 | Υ                   |
| PFECHS                                                                                | Perfluoro-4-ethylcyclohexane Sulfonic<br>Acid                    | 646-83-3    |                     |
| 8CI-PFOS                                                                              | 8-Chloroperfluoro-1-Octanesulfonic Acid                          | 777011-38-8 |                     |
| 3:3FTCA                                                                               | 3-Perfluoropropyl Propanoic Acid                                 | 0356-02-05  | Υ                   |
| 5:3FTCA                                                                               | 2h,2h,3h,3h-Perfluorooctanoic Acid                               | 914637-49-3 | Υ                   |
| 7:3FTCA                                                                               | 3-Perfluoroheptyl propanoic acid                                 | 812-70-4    | Υ                   |
| FDUEA                                                                                 | 2H-Perfluoro-2-dodecenoic acid                                   | 70887-94-4  |                     |
| FOUEA                                                                                 | 2H-perfluoro-2-decenoic acid                                     | 70887-84-2  |                     |
| 6:6PFPi                                                                               | Bis(perfluorohexyl)phosphinic acid                               | 40143-77-9  |                     |
| 6:8PFPi                                                                               | (Heptadecafluorooctyl)<br>(tridecafluorohexyl) Phosphinic Acid   | 610800-34-5 |                     |
| 8:8PFPi                                                                               | Bis(perfluorooctyl)phosphinic acid                               | 40143-79-1  |                     |
| N-AP-FHxSA                                                                            | N-(3-dimethylaminopropan-1-yl) perfluoro-<br>1-hexanesulfonamide | 50598-28-2  |                     |

#### APPENDIX 4 All Waterkeeper Group Sample Results

Link to Spreadsheet (Waterkeeper.org)

#### APPENDIX 5 List of States Not Sampled for PFAS in Surface Waters

- Arizona
- Delaware
- Hawaii
- Illinois
- Indiana
- Iowa
- Louisiana
- Minnesota
- Nebraska
- Nevada
- New Hampshire
- New Mexico
- North Dakota
- South Dakota
- Utah
- Wyoming

#### APPENDIX 6 QA/QC Protocol

#### QUALITY ASSURANCE-QUALITY CONTROL (QA/QC) PROJECT PLAN FOR NATIONAL PFAS SURVEY DATA COLLECTION AND ANALYSIS

<u>Waterkeeper Alliance Quality Assurance Statement of Collected National</u> <u>PFAS Survey Information</u>

#### National PFAS Survey Information

Waterkeeper Alliance and licensed U.S. Waterkeeper groups will collect reliable and accurate water samples consistent with standards for quality assurance and quality control. Waterkeeper Alliance and U.S. Waterkeeper groups aim to produce quality data that is accurate, precise, complete, and representative. Quality Assurance, Quality Control, and Quality Assessment (QA/QC) measures will be implemented and are consistent with EPA analytical methods for PFAS.

#### **Application of Protocol:**

This QA/QC Plan for the national PFAS monitoring project is intended to ensure the use of procedures that are consistent and reliable in order to obtain water samples that are scientifically defensible and representative. The specific techniques described herein are intended to assure representative samples are collected without contamination, loss, or degradation.

#### Summary of Method Requirements:

The validity of water sampling results depends on: (1) ensuring that each sample obtained is representative of water quality conditions; (2) employing proper sampling, handling, and preservation techniques; (3) properly identifying the collected samples and location information on the provided Cyclopure Water Test Kit data card; (4) verification of each water sample location information, waterbody name, date of sample collection by Waterkeeper Alliance staff with written confirmation by participating U.S. Waterkeeper groups.

#### **Special Qualifications:**

The QA/QC plan is designed to assure that water sampling follows proper, validated methodologies. The generation of reliable data requires that all activities are conducted by knowledgeable and trained personnel. Each PFAS water sample collected in this project was conducted by a licensed Waterkeeper or designated, qualified Waterkeeper group staff member.

#### **Universal Requirements and Precautions:**

The following are the *water sample collection requirements implemented in this project:* 

- All designated staff collecting water samples must wear appropriate clothing and footwear during sampling events. Additionally, non-powdered gloves are consistent with safety procedures when handling sample bottles and sampling equipment, before, during, and after sample collection. New gloves are required at each sample location. Gloves are supplied to each Waterkeeper group in each individual Cyclopure test kit.
- Determine the direction of flow and, if the directional flow is present, position the sample bottle so that it is facing in an upstream direction.
- If possible, avoid entering the waterway to collect samples. If it is necessary to enter a waterbody to obtain the sample, the sample collector should enter downstream of the sampling location and obtain the sample at least 6 feet upstream of that location.
- Avoid disturbance of any bottom sediments during sample collection, and avoid collecting floating material, insects, algae, and other debris where possible.
- As directed by laboratory methodology, obtain samples directly from the stream using laboratory-supplied sampling containers.

#### Parameters of Sample Site Selection:

The sample collection sites are established by the Waterkeeper group prior to sample collection within each individual Waterkeeper basin with site selection support available from Waterkeeper Alliance and Cyclopure staff. Generally, the upstream sample will be selected in a location expected to have minimal PFAS contamination and the downstream location will be in an area of suspected contamination, such as below a potential PFAS pollutant source.

#### Water Sample Collection

All the water sample information available in the report shall be collected by licensed Waterkeeper groups. All Waterkeeper groups collecting water sample information are provided with training and instruction on water sample collection procedures via a live presentation on May 10, 2022, or through a recording of that event. Waterkeeper groups are provided with detailed instructions covering sample collection and analysis methodologies. Waterkeeper groups are instructed to fill collection cups with 250 mL taken in the upper clear layers of surface water sources while dipping the collection cup away from the water's edge and avoiding sediments. In order to obtain a Cyclopure water test kit, a valid Waterkeeper license had to be on file with Waterkeeper Alliance at the time of shipment.

#### Labeling, Processing, and Handling Water Samples:

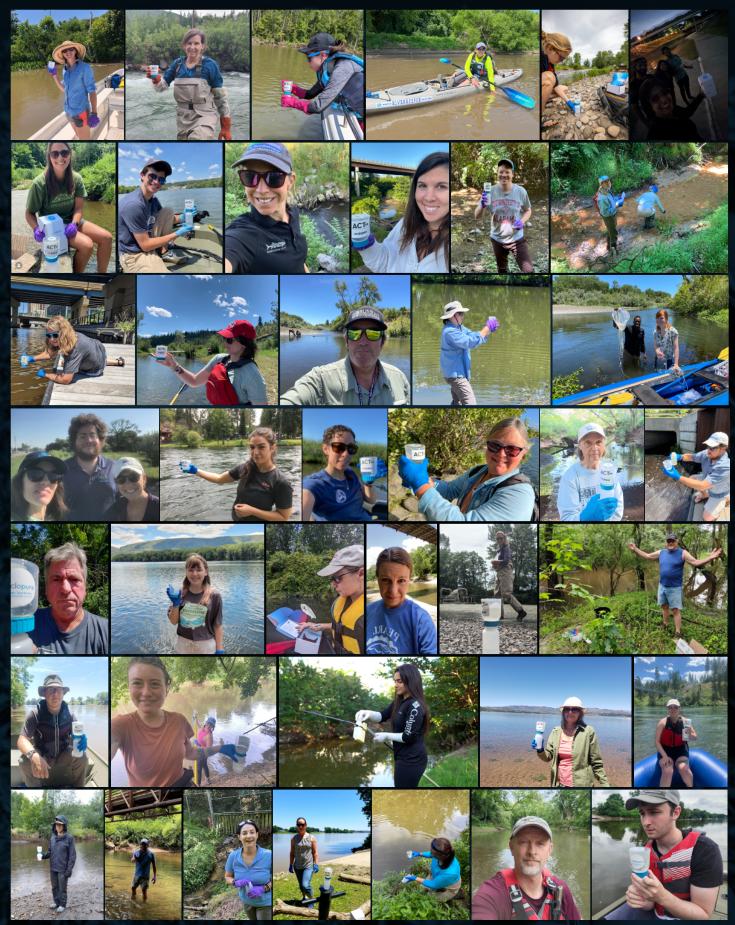
Cyclopure will ship test kits directly to Waterkeeper groups and completed kits will be shipped back to Cyclopure after sample collection. The test kit includes detailed instructions and pre-paid return shipping labels.

Cyclopure's PFAS test kit consists of a 250 ml collection cup with a DEXSORBloaded extraction disc in a bottom filter. Using the PFAS test kit, Cyclopure can accurately measure and quantify the presence of short and long-chain PFAS with Point-of-Site extraction method. Point-of-Site sample extraction is completed by filling the test kit collection cup with 250 mL of the water sample and then allowing the water to pass through the DEXSORB-loaded extraction disc. While draining, the sampler sets the cup on top of the 250 mL HDPE drain bottle. Once all water passes through the PFAS sampler, the sampler pours the water out of the drain bottle. The PFAS collection cup containing the DEXSORB-loaded extraction disc is returned to Cyclopure's lab. No water is shipped to Cyclopure.

The physical location of the sample collected is recorded via GPS handheld receiver and recorded on the provided data information card.

#### **Analytical Methods**

Waterkeeper groups performed PFAS extractions in the field using the company's DEXSORB-loaded extraction disc. Field extraction avoids trip contamination; PFAS are absorbed and securely locked into DEXSORB's cyclodextrin cups.


When the completed PFAS test kit is received, Cyclopure analytical chemists perform standard solid-phase extraction (SPE) to recover PFAS compounds collected in the DEXSORB extraction disc. See Attachment 1. The PFAS sample is subsequently analyzed on an HPLC-MS/MS (QExactive hybrid quadrupole orbitrap, ThermoFisher). Analytical procedures use isotope dilution for PFAS measurement and quantification. The analysis of water samples has been validated to the requirements of EPA Methods 533, 537, and 1633 (draft), and follows instrument procedures for internal standardization and calibration. Cyclopure tests for 55 PFAS structures, including 21 precursors and all PFAS listed under EPA Methods 533, 537, and 1633 (draft). The limit of quantification (LOQ) for all 55 PFAS tested under Cyclopure analytical methods is 1 - 2 ppt (ng/L). Reporting limits have been validated to the accuracy criteria of EPA methods, including Minimum Reporting Limit (MRL) confirmation.

#### Attachment 1

#### APPENDIX 7 Percentage of Samples with PFAS Detections by States and D.C.

| State          | Total # Samples | # Samples with<br>PFAS Detections | % of Total Samples with<br>PFAS Detections |
|----------------|-----------------|-----------------------------------|--------------------------------------------|
| Alabama        | 16              | 16                                | 100.00%                                    |
| Alaska         | 2               | 2                                 | 100.00%                                    |
| Arkansas       | 2               | 0                                 | 0.00%                                      |
| California     | 22              | 14                                | 63.64%                                     |
| Colorado       | 4               | 0                                 | 0.00%                                      |
| Connecticut    | 2               | 2                                 | 100.00%                                    |
| D.C.           | 2               | 2                                 | 100.00%                                    |
| Florida        | 15              | 15                                | 100.00%                                    |
| Georgia        | 18              | 18                                | 100.00%                                    |
| Idaho          | 4               | 2                                 | 50.00%                                     |
| Kansas         | 2               | 0                                 | 0.00%                                      |
| Kentucky       | 2               | 2                                 | 100.00%                                    |
| Maine          | 2               | 2                                 | 100.00%                                    |
| Maryland       | 20              | 20                                | 100.00%                                    |
| Massachusetts  | 2               | 2                                 | 100.00%                                    |
| Michigan       | 6               | 2                                 | 33.33%                                     |
| Mississippi    | 2               | 2                                 | 100.00%                                    |
| Missouri       | 2               | 2                                 | 100.00%                                    |
| Montana        | 4               | 0                                 | 0.00%                                      |
| New Jersey     | 2               | 2                                 | 100.00%                                    |
| New York       | 10              | 10                                | 100.00%                                    |
| North Carolina | 20              | 18                                | 90.00%                                     |
| Ohio           | 3               | 3                                 | 100.00%                                    |
| Oklahoma       | 6               | 2                                 | 33.33%                                     |
| Oregon         | 4               | 4                                 | 100.00%                                    |
| Pennsylvania   | 8               | 8                                 | 100.00%                                    |
| Rhode Island   | 6               | 6                                 | 100.00%                                    |
| South Carolina | 11              | 11                                | 100.00%                                    |
| Tennessee      | 2               | 2                                 | 100.00%                                    |
| Texas          | 4               | 4                                 | 100.00%                                    |
| Vermont        | 2               | 0                                 | 0.00%                                      |
| Virginia       | 6               | 6                                 | 100.00%                                    |
| Washington     | 10              | 6                                 | 60.00%                                     |
| West Virginia  | 3               | 3                                 | 100.00%                                    |
| Wisconsin      | 2               | 2                                 | 100.00%                                    |
| Grand Total    | 228             | 190                               | 83.33%                                     |

#### THANK YOU TO THE WATERKEEPER ALLIANCE MEMBERS WHO MADE THIS POSSIBLE!



#### REFERENCES

1 EPA, "Our Current Understanding of the Human Health and Environmental Risks of PFAS," *available at* <u>https://www.epa.gov/pfas/our-current-understanding-human-health-and-environmental-risks-pfas</u> (last viewed Sept. 22, 2022).

2 Environmental Working Group ("EWG"), "More than 2,000 communities have drinking water with 'forever chemicals' above new EPA levels," *available at* <u>https://www.ewg.org/news-insights/news-release/2022/06/more-2000-communities-have-drinking-water-forever-chemicals#:~:text=EWG%20</u> estimates%20that%20more%20than,the%20reproductive%20and%20immune%20systems (last viewed Sept. 22, 2022).

3 EWG, Map: "Suspected Industrial Discharges of PFAS," *available at* <u>https://www.ewg.org/interactive-maps/2021\_suspected\_industrial\_discharges\_of\_pfas/map/</u> (last viewed Sept. 22, 2022).

4 EWG, Map: "PFAS Contamination in the U.S.," *available at <u>https://www.ewg.org/interactive-maps/</u> <u>pfas\_contamination/map/</u> (last viewed Sept. 22, 2022).* 

5 *Id.;* see also, e.g., EPA, "PFAS Strategic Roadmap: EPA's Commitments to Action 2021–2024," available at: <u>https://www.epa.gov/system/files/documents/2021-10/pfas-roadmap\_final-508.pdf</u> (last viewed Oct. 11, 2022); U.S. Senate Committee on Environment and Public Works, "Superfund Sites Identified by EPA to have PFAS Contamination," available at <u>https://www.epw.senate.gov/public/</u> index.cfm/superfund-sites-identified-by-epa-to-have-pfas-contamination (last viewed Oct. 11, 2022).

6 Some samples, where noted in Appendix 4, were not taken at site that was upstream and downstream of a potential PFAS source and one sample in Florida's Calusa River watershed was taken from a shallow groundwater source.

7 EWG, Human Toxome Project, Perfluorochemicals (PFCs), *available at* <u>https://www.ewg.org/sites/humantoxome/chemicals/chemical\_classes.php?class=Perfluorochemicals+%28PFCs%29</u> (last viewed Sept. 27, 2022).

8 Centers for Disease Control, Perfluorooctanoic Acid (PFOA) Factsheet, *available at* <u>https://www.cdc.gov/biomonitoring/PFOA\_FactSheet.html</u> (last viewed Sept. 27, 2022).

9 The Univ. of Rhode Island, "3M admits to unlawful release of PFAS in Alabama," *available at <u>https://</u>web.uri.edu/steep/3m-admits-to-unlawful-release-of-pfas-in-alabama/</u> (last viewed Sept. 27, 2022).* 

10 Yixiang Bao, et al., "Role of hydrogenated moiety in redox treatability of 6:2 fluorotelomer sulfonic acid in chrome mist suppressant solution," Journal of Hazardous Materials, Volume 408, 2021, 124875, ISSN 0304-3894 (Apr. 15, 2021), *available at* <u>https://www.sciencedirect.com/science/article/abs/pii/S0304389420328661#!</u> (last viewed Sept. 27, 2022).

11 EWG Tap Water Database, Perfluoropentane sulfonic acid (PFPeS), *available at* <u>https://www.ewg.org/tapwater/contaminant.php?contamcode=E313</u> (last viewed Sept. 27, 2022).

12 EWG Tap Water Database, Perfluorohexane sulfonamide (FHxSA), *available at <u>https://www.ewg.org/</u> tapwater/system-contaminant.php?pws=NC0392020&contamcode=E347* (last viewed Sept. 27, 2022).

13 Michigan PFAS Action Response Team, Perfluoroethylcyclohexane Sulfonate (PFECHS), Current Knowledge of Physiochemical Properties, Environmental Contamination and Toxicity Whitepaper (May 15, 2020), *available at* <u>https://www.michigan.gov/-/media/Project/Websites/pfasresponse/</u> documents/MPART/Workgroups/Human-Health/White-Paper-Physiochemical-Properties-Environmental-Contamination-Toxicity-PFECHS.pdf?rev=677c70c658e44688aa72e440c7847dac (last viewed Sept. 27, 2022).

14 EWG Tap Water Database, Perfluoroheptane sulfonic acid (PFHpS), *available at <u>https://www.ewg.</u>org/tapwater/contaminant.php?contamcode=E312* (last viewed Sept. 27, 2022).

15 EWG Tap Water Database, N-ethyl perfluorooctane sulfonamido acetic acid (N-EtFOSAA), available at <a href="https://www.ewg.org/tapwater/contaminant.php?contamcode=E310">https://www.ewg.org/tapwater/contaminant.php?contamcode=E310</a> (last viewed Sept. 27, 2022).

16 EWG Tap Water Database, 8:2 Fluorotelomer sulfonate (8:2FTS), *available at <u>https://www.ewg.</u>org/tapwater//system-contaminant.php?pws=NC0465010&contamcode=E319* (last viewed Sept. 27, 2022).

17 EWG, "EPA: GenX Nearly as Toxic as Notorious Non-Stick Chemicals It Replaced," available at <a href="https://www.ewg.org/news-insights/news-release/epa-genx-nearly-toxic-notorious-non-stick-">https://www.ewg.org/news-insights/news-release/epa-genx-nearly-toxic-notorious-non-stick-</a>

chemicals-it-replaced (last viewed Sept. 27, 2022).

18 EWG Tap Water Database, N-methyl perfluorooctanesulfonamidoacetic acid (NMeFOSAA), available at <a href="https://www.ewg.org/tapwater/contaminant.php?contamcode=E311">https://www.ewg.org/tapwater/contaminant.php?contamcode=E311</a> (last viewed Sept. 27, 2022).

19 EPA, Working list of PFAS chemicals with research interest and ongoing work by EPA, *available at* <u>https://www.epa.gov/sites/default/files/2019-05/documents/pfas\_research\_list.pdf</u> (last viewed Sept. 27, 2022).

20 EWG Tap Water Database, Perfluoro-3-methoxypropanoic acid (PFMOPrA), *available at <u>https://</u>www.ewg.org/tapwater/contaminant.php?contamcode=E330* (last viewed Sept. 27, 2022).

21 EPA, Working list of PFAS chemicals with research interest and ongoing work by EPA, *available at* <u>https://www.epa.gov/sites/default/files/2019-05/documents/pfas\_research\_list.pdf (last viewed Sept.</u> 27, 2022).

22 EWG Tap Water Database, 4,8-dioxa-3H-perfluorononanoic acid (ADONA), *available at <u>https://www.ewg.org/tapwater/contaminant.php?contamcode=E308</u> (last viewed Sept, 27, 2022).* 

23 EPA, Technical Fact Sheet: "Drinking Water Health Advisories for Four PFAS (PFOA, PFOS, GenX chemicals, and PFBS)," *available at* <u>https://www.epa.gov/system/files/documents/2022-06/technical-factsheet-four-PFAS.pdf</u> (last viewed Sept. 22, 2022).

24 Parts per trillion (ppt) and nanograms per liter (ng/l) are equivalent measures and are used interchangeably by EPA and in this report.

25 EWG, "Twelvefold increase in suspected industrial dischargers of 'forever chemicals'," *available at* <u>https://www.ewg.org/news-insights/news-release/2021/07/twelvefold-increase-suspected-industrial-dischargers-forever</u> (last viewed Sept. 22, 2022).

26 EPA, "EPA Proposes Designating Certain PFAS Chemicals as Hazardous Substances Under Superfund to Protect People's Health," *available at* <u>https://www.epa.gov/newsreleases/epa-proposes-designating-certain-pfas-chemicals-hazardous-substances-under-superfund</u> (last viewed Sept. 22, 2022).

27 ND in this table indicates that an analyte was not detected above the laboratory method limits of detection for the analyte, as set forth in Appendix 4 for each sample. ND does not indicate that no PFAS was present in the sample.

28 EPA, Technical Fact Sheet: "Drinking Water Health Advisories for Four PFAS (PFOA, PFOS, GenX chemicals, and PFBS)," *available at* <u>https://www.epa.gov/system/files/documents/2022-06/technical-factsheet-four-PFAS.pdf</u> (last viewed Sept. 22, 2022).

29 See Cyclopure Report at 6-7.

30 EPA, "Drinking Water Health Advisories for PFOA and PFOS; 2022 Interim Updated PFOA and PFOS Health Advisories," *available at <u>https://www.epa.gov/sdwa/drinking-water-health-advisories-pfoa-and-pfos</u> (last viewed Sept. 22, 2022).* 

31 See Cyclopure Report at 8.

32 Interstate Technology and Regulatory Council (ITRC), PFAS Water and Soil Values Table Excel File, available at: <u>https://pfas-1.itrcweb.org/fact-sheets/</u> (last viewed September 27, 2022).

33 EPA, Spreadsheet: "Working List of PFAS Chemicals with Research Interest and Ongoing Work by EPA," *available at* <u>https://www.epa.gov/sites/default/files/2019-05/documents/pfas\_research\_list.pdf</u> (last viewed Sept. 22, 2022).

34 See Cyclopure Report at 6.

35 See Cyclopure Report at 8.

36 Interstate Technology and Regulatory Council (ITRC), PFAS Water and Soil Values Table Excel File, available at: <u>https://pfas-1.itrcweb.org/fact-sheets/</u> (last viewed September 27, 2022).

37 See Cyclopure Report at 7.

38 See Cyclopure Report at 9.

39 See Cyclopure Report at 9.

40 See Cyclopure Report at 9-10.

41 See Cyclopure Report at 10.

42 See Cyclopure Report at 10.

43 See Cyclopure Report at 10.

44 The number "0" in this table represents that an analyte was not detected above the laboratory method limits of detection for the analyte, as set forth in Appendix 4 for each sample. "0" does not mean that no PFAS was present in the sample.

45 See Cyclopure Report at 11-13.

46 See Cyclopure Report at 11.

47 See Cyclopure Report at 11.

48 See Cyclopure Report at 12.

49 See Cyclopure Report at 12.

50 See Cyclopure Report at 12.

51 See Cyclopure Report at 12-13.

52 See Cyclopure Report at 13.

53 EWG, Map: "PFAS Contamination in the U.S.," *available at <u>https://www.ewg.org/interactive-maps/</u> <u>pfas\_contamination/map/</u> (last viewed Sept. 22, 2022).* 

54 EWG, "Twelvefold increase in suspected industrial dischargers of 'forever chemicals'," *available at* <u>https://www.ewg.org/news-insights/news-release/2021/07/twelvefold-increase-suspected-industrial-dischargers-forever</u> (last viewed Sept. 22, 2022).

55 EPA, "EPA Announces New Drinking Water Health Advisories for PFAS Chemicals, \$1 Billion in Bipartisan Infrastructure Law Funding to Strengthen Health Protections," *available at* <u>https://www.epa.gov/newsreleases/epa-announces-new-drinking-water-health-advisories-pfas-chemicals-1-billion-bipartisan</u> (last viewed Sept. 22, 2022).

56 EPA, "PFAS Strategic Roadmap: EPA's Commitments to Action 2021-2024," *available at <u>https://</u>www.epa.gov/pfas/pfas-strategic-roadmap-epas-commitments-action-2021-2024</u> (last viewed Sept. 22, 2022).* 

57 U.S. Congress, "S.4161 - Clean Water Standards for PFAS 2.0 Act of 2022," *available at <u>https://</u>www.congress.gov/bill/117th-congress/senate-bill/4161</u> (last viewed Sept. 22, 2022).* 

58 EPA, "Basic Information on Water Quality Criteria," *available at <u>https://www.epa.gov/wqc/basic-information-water-quality-criteria</u> (last viewed Sept. 22, 2022).* 

59 EPA, "National Recommended Water Quality Criteria - Human Health Criteria Table," *available at* <u>https://www.epa.gov/wqc/national-recommended-water-quality-criteria-human-health-criteria-table</u> (last viewed Sept. 22, 2022).

60 EPA, "Effluent Guidelines," available at https://www.epa.gov/eg (last viewed Sept. 22, 2022)

61 EPA, "Industrial Effluent Guidelines," *available at* <u>https://www.epa.gov/eg/industrial-effluent-guidelines#existing</u> (last viewed Sept. 22, 2022).

62 EPA, "National Pollutant Discharge Elimination System (NPDES); Pretreatment Standards and Requirements," *available at <u>https://www.epa.gov/npdes/pretreatment-standards-and-requirements-applicability</u> (last viewed Sept. 22, 2022).* 

63 EPA, "Per- and Polyfluoroalkyl Substances (PFAS)," *available at* <u>https://www.epa.gov/sdwa/and-polyfluoroalkyl-substances-pfas#:~:text=EPA%20is%20developing%20a%20proposed,by%20</u> <u>the%20end%20of%202023</u> (last viewed Sept. 22, 2022).

64 EPA, "PFAS Strategic Roadmap: EPA's Commitments to Action 2021-2024," *available at <u>https://</u>www.epa.gov/pfas/pfas-strategic-roadmap-epas-commitments-action-2021-2024</u> (last viewed Sept. 22, 2022).* 

**70** WATERKEEPER ALLIANCE

65 EPA, "EPA Advances Science to Protect the Public from PFOA and PFOS in Drinking Water," *available at* <u>https://www.epa.gov/newsreleases/epa-advances-science-protect-public-pfoa-and-pfos-drinking-water</u> (last viewed Sept. 22, 2022).

66 EPA, "Designation of Perfluorooctanoic Acid (PFOA) and Perfluorooctanesulfonic Acid (PFOS) as CERCLA Hazardous Substances, 87 Fed. Reg. 54415," *available at <u>https://www.govinfo.gov/content/</u>pkg/FR-2022-09-06/pdf/2022-18657.pdf</u> (last viewed Sept. 22, 2022).* 

67 EPA, "PFAS Strategic Roadmap: EPA's Commitments to Action 2021-2024," *available at <u>https://</u>www.epa.gov/pfas/pfas-strategic-roadmap-epas-commitments-action-2021-2024</u> (last viewed Sept. 22, 2022).* 

68 EPA, "EPA Proposes Designating Certain PFAS Chemicals as Hazardous Substances Under Superfund to Protect People's Health," *available at <u>https://www.epa.gov/newsreleases/epa-proposes-designating-certain-pfas-chemicals-hazardous-substances-under-superfund</u> (last viewed Sept. 22, 2022).* 

69 Id.

70 EPA, "EPA Responds to New Mexico Governor and Acts to Address PFAS Under Hazardous Waste Law," *available at* <u>https://www.epa.gov/newsreleases/epa-responds-new-mexico-governor-and-acts-address-pfas-under-hazardous-waste-law</u> (last viewed Sept. 22, 2022).

71 EPA, "PFAS Strategic Roadmap: EPA's Commitments to Action 2021-2024," *available at* <u>https://www.epa.gov/pfas/pfas-strategic-roadmap-epas-commitments-action-2021-2024</u> (last viewed Sept. 22, 2022).

72 EPA, Regulatory Agenda, Spring 2022, *available at <u>https://www.reginfo.gov/public/do/</u> <u>eAgendaViewRule?publd=202204&RIN=2050-AH26</u> (last viewed September 22, 2022).* 

73 Id.

74 EPA, "Aquatic Life Criteria - Perfluorooctanoic Acid (PFOA)," *available at <u>https://www.epa.gov/</u><u>wqc/aquatic-life-criteria-perfluorooctanoic-acid-pfoa</u> (last viewed Sept. 22, 2022).* 

75 EPA, "PFAS Strategic Roadmap: EPA's Commitments to Action 2021-2024," *available at <u>https://</u>www.epa.gov/pfas/pfas-strategic-roadmap-epas-commitments-action-2021-2024</u> (last viewed Sept. 22, 2022).* 

76 EPA, "PFAS Analytical Methods Development and Sampling Research," *available at <u>https://www.epa.gov/water-research/pfas-analytical-methods-development-and-sampling-research</u> (last viewed Sept. 22, 2022).* 

77 EPA, "Explore EPA's Bipartisan Infrastructure Law Funding Allocations," *available at <u>https://www.epa.gov/infrastructure/explore-epas-bipartisan-infrastructure-law-funding-allocations</u> (last viewed Sept. 22, 2022).* 

78 EPA, "EPA PFAS Drinking Water Laboratory Methods," *available at <u>https://www.epa.gov/pfas/epa-pfas-drinking-water-laboratory-methods</u> (last viewed Sept. 22, 2022).* 

79 EPA, "CWA Analytical Methods for Per- and Polyfluorinated Alkyl Substances (PFAS)," *available at* <u>https://www.epa.gov/cwa-methods/cwa-analytical-methods-and-polyfluorinated-alkyl-substances-pfas</u> (last viewed Sept. 22, 2022).